互いに素な集合と対角集合の関係
互いに素な集合と対角集合の関係
集合\(X\)の部分集合\(A,B\subseteq X\)に対し、以下が成り立つ。
\[ A\cap B=\emptyset\Leftrightarrow\left(A\times B\right)\cap\Delta_{X}=\emptyset \]
集合\(X\)の部分集合\(A,B\subseteq X\)に対し、以下が成り立つ。
\[ A\cap B=\emptyset\Leftrightarrow\left(A\times B\right)\cap\Delta_{X}=\emptyset \]
-
\(\Delta_{X}\)は\(X\)の対角集合\(\Rightarrow\)
\(A\cap B=\emptyset\)のとき、\begin{align*} \left(A\times B\right)\cap\Delta_{X} & =\left(A\times B\right)\cap\left\{ \left(x,y\right)\in X\times X;x=y\right\} \\ & \subseteq\left\{ \left(x,y\right)\in A\times B;x\ne y\right\} \cap\left\{ \left(x,y\right)\in X\times X;x=y\right\} \\ & =\emptyset \end{align*} となるので、\(\left(A\times B\right)\cap\Delta_{x}=\emptyset\)となる。
従って\(\Rightarrow\)が成り立つ。
\(\Leftarrow\)
対偶で示す。\(A\cap B\ne\emptyset\)のとき、\(\left(A\times B\right)\cap\Delta_{X}\ne\emptyset\)を示せばいい。
\(A\cap B\ne\emptyset\)なのである元\(a\in X\)が存在し\(a\in A\land a\in B\)となる。
このとき、\(\left(a,a\right)\in A\times B\)となり、対角集合の定義より、\(\left(a,a\right)\in\Delta_{X}\)なので、\(\left(a,a\right)\in\left(A\times B\right)\cap\Delta_{X}\ne\emptyset\)となる。
故に対偶が示されたので\(\Leftarrow\)が成り立つ。
-
これより\(\Rightarrow\)と\(\Leftarrow\)が成り立つので\(\Leftrightarrow\)が成り立つ。ページ情報
タイトル | 互いに素な集合と対角集合の関係 |
URL | https://www.nomuramath.com/xi8h5cg6/ |
SNSボタン |
リーマン・ゼータ関数を含む総和
\[
\sum_{k=2}^{\infty}\frac{\zeta\left(k\right)-1}{k}=1-\gamma
\]
[python]for文の基本
対称な5次方程式
\[
\left(x+y\right)^{5}=x^{5}+y^{5}
\]
距離空間でのε-近傍・開集合・閉集合・開集合全体の集合・開集合族の定義
\[
U_{\epsilon}\left(a\right)=\left\{ x\in X;d\left(x,a\right)<\epsilon\right\}
\]