全体集合と補集合の定義
全体集合と補集合の定義
すなわち、\(x\notin A\Leftrightarrow x\in A^{c}\)である。
また、\(x\in A\Leftrightarrow x\notin A^{c}\)も成り立つ。
(1)全体集合(普遍集合)
考えている対象全体を全体集合または普遍集合という。(2)補集合
全体集合\(X\)の中で集合\(A\)に含まれない要素全てを集めた集合を\(A\)の補集合といい、\(A^{c}:=X\setminus A\)で表す。すなわち、\(x\notin A\Leftrightarrow x\in A^{c}\)である。
また、\(x\in A\Leftrightarrow x\notin A^{c}\)も成り立つ。
全体集合を\(X=\left\{ a,b,c\right\} \)とする。
このとき、
\(\left\{ a\right\} ^{c}=\left\{ a,b,c\right\} \setminus\left\{ a\right\} =\left\{ b,c\right\} \)
\(\left\{ a,b\right\} ^{c}=\left\{ a,b,c\right\} \setminus\left\{ a,b\right\} =\left\{ c\right\} \)
となる。
このとき、
\(\left\{ a\right\} ^{c}=\left\{ a,b,c\right\} \setminus\left\{ a\right\} =\left\{ b,c\right\} \)
\(\left\{ a,b\right\} ^{c}=\left\{ a,b,c\right\} \setminus\left\{ a,b\right\} =\left\{ c\right\} \)
となる。
ページ情報
タイトル | 全体集合と補集合の定義 |
URL | https://www.nomuramath.com/renj8eqj/ |
SNSボタン |
リーマンゼータ関数の関数等式
\[
\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s)=\pi^{-\frac{1-s}{2}}\Gamma\left(\frac{1-s}{2}\right)\zeta(1-s)
\]
二元不定方程式が整数解を持つ
\[
ax+by=c\text{が整数解を持つ}\Leftrightarrow c\text{は}\gcd(a,b)\text{の倍数}
\]
ヘヴィサイドの階段関数の2定義値の和と差
\[
H\left(\pm_{1}1\right)\pm_{2}H\left(\pm_{1}1\right)=H\left(\pm_{2}1\right)\pm_{1}H\left(\pm_{2}1\right)
\]
3引数論理演算の括弧外しと優先順位変更全パターン
\[
P\lor\left(Q\land R\right)\Leftrightarrow\left(P\lor Q\right)\land\left(P\lor R\right)
\]