全体集合と補集合の定義
全体集合と補集合の定義
すなわち、\(x\notin A\Leftrightarrow x\in A^{c}\)である。
また、\(x\in A\Leftrightarrow x\notin A^{c}\)も成り立つ。
(1)全体集合(普遍集合)
考えている対象全体を全体集合または普遍集合という。(2)補集合
全体集合\(X\)の中で集合\(A\)に含まれない要素全てを集めた集合を\(A\)の補集合といい、\(A^{c}:=X\setminus A\)で表す。すなわち、\(x\notin A\Leftrightarrow x\in A^{c}\)である。
また、\(x\in A\Leftrightarrow x\notin A^{c}\)も成り立つ。
全体集合を\(X=\left\{ a,b,c\right\} \)とする。
このとき、
\(\left\{ a\right\} ^{c}=\left\{ a,b,c\right\} \setminus\left\{ a\right\} =\left\{ b,c\right\} \)
\(\left\{ a,b\right\} ^{c}=\left\{ a,b,c\right\} \setminus\left\{ a,b\right\} =\left\{ c\right\} \)
となる。
このとき、
\(\left\{ a\right\} ^{c}=\left\{ a,b,c\right\} \setminus\left\{ a\right\} =\left\{ b,c\right\} \)
\(\left\{ a,b\right\} ^{c}=\left\{ a,b,c\right\} \setminus\left\{ a,b\right\} =\left\{ c\right\} \)
となる。
ページ情報
タイトル | 全体集合と補集合の定義 |
URL | https://www.nomuramath.com/renj8eqj/ |
SNSボタン |
階乗を和に直しましょう
\[
\lim_{n\rightarrow\infty}\frac{1}{n}\sqrt[n]{\frac{\left(3n\right)!}{\left(2n\right)!}}=?
\]
互いに素な集合と対角集合の関係
\[
A\cap B=\emptyset\Leftrightarrow\left(A\times B\right)\cap\Delta_{X}=\emptyset
\]
集合族の有限性・鎖・帰納的順序集合の定義
\[
A\in\mathcal{A}\Leftrightarrow\forall B\subseteq A,\left|B\right|<\infty\rightarrow B\in\mathcal{A}
\]
🔰[python]リストに要素を追加と削除する
list1.append('c')