集合族の和集合と積集合の定義

集合族の和集合と積集合の定義
集合族\(\mathcal{A}=\left\{ A_{\lambda}\right\} _{\lambda\in\Lambda}\)が与えられているとする。
このとき、集合族の和集合と積集合を以下で定義する。

(1)集合族の和集合

\[ \bigcup\mathcal{A}=\bigcup_{\lambda\in\Lambda}A_{\lambda}=\left\{ x;\exists\lambda\in\Lambda,x\in A_{\lambda}\right\} \]

(2)集合族の積集合

\[ \bigcap\mathcal{A}=\bigcap_{\lambda\in\Lambda}A_{\lambda}=\left\{ x;\forall\lambda\in\Lambda,x\in A_{\lambda}\right\} \]
\(\mathcal{A}=\left\{ \left\{ a,b\right\} ,\left\{ a,c\right\} ,\left\{ a,d\right\} ,\left\{ a,b,c\right\} \right\} \)とすると、
\[ \bigcup\mathcal{A}=\left\{ a,b\right\} \cup\left\{ a,c\right\} \cup\left\{ a,d\right\} \cup\left\{ a,b,c\right\} =\left\{ a,b,c,d\right\} \] \[ \bigcap\mathcal{A}=\left\{ a,b\right\} \cap\left\{ a,c\right\} \cap\left\{ a,d\right\} \cap\left\{ a,b,c\right\} =\left\{ a\right\} \] となる。

ページ情報
タイトル
集合族の和集合と積集合の定義
URL
https://www.nomuramath.com/jz5cse2b/
SNSボタン