順序対の定義
順序対の定義
\(\left(a_{1},b_{1}\right)=\left(a_{2},b_{2}\right)\)となるのは、\(a_{1}=a_{2}\land b_{1}=b_{2}\)となるときのみ、すなわち\(\left(a_{1},b_{1}\right)=\left(a_{2},b_{2}\right)\Leftrightarrow a_{1}=a_{2}\land b_{1}=b_{2}\)である。
3つの順序対は\(\left(a,b,c\right)=\left(a,\left(b,c\right)\right)\)や\(\left(a,b,c\right)=\left(\left(a,b\right),c\right)\)とすればいい。
\(\left(a,b\right):=\left\{ \left\{ a,1\right\} ,\left\{ b,2\right\} \right\} \)とする。
クラトフスキーの定義
\(\left(a,b\right):=\left\{ \left\{ a\right\} ,\left\{ a,b\right\} \right\} \)とする。
このとき、\(\left(a,a\right)=\left\{ \left\{ a\right\} ,\left\{ a,a\right\} \right\} =\left\{ \left\{ a\right\} ,\left\{ a\right\} \right\} =\left\{ \left\{ a\right\} \right\} \)となる。
(1)順序対
2つの対象\(a,b\)を順番も考慮し組にしたものを順序対といい、\(a,b\)の順に指定するなら\(\left(a,b\right)\)と表記する。\(\left(a_{1},b_{1}\right)=\left(a_{2},b_{2}\right)\)となるのは、\(a_{1}=a_{2}\land b_{1}=b_{2}\)となるときのみ、すなわち\(\left(a_{1},b_{1}\right)=\left(a_{2},b_{2}\right)\Leftrightarrow a_{1}=a_{2}\land b_{1}=b_{2}\)である。
3つの順序対は\(\left(a,b,c\right)=\left(a,\left(b,c\right)\right)\)や\(\left(a,b,c\right)=\left(\left(a,b\right),c\right)\)とすればいい。
(2)順序対の定義
ハウスドルフの定義\(\left(a,b\right):=\left\{ \left\{ a,1\right\} ,\left\{ b,2\right\} \right\} \)とする。
クラトフスキーの定義
\(\left(a,b\right):=\left\{ \left\{ a\right\} ,\left\{ a,b\right\} \right\} \)とする。
このとき、\(\left(a,a\right)=\left\{ \left\{ a\right\} ,\left\{ a,a\right\} \right\} =\left\{ \left\{ a\right\} ,\left\{ a\right\} \right\} =\left\{ \left\{ a\right\} \right\} \)となる。
ページ情報
タイトル | 順序対の定義 |
URL | https://www.nomuramath.com/n3uwlg7w/ |
SNSボタン |
対数と偏角の性質
\[
\log\alpha^{\beta}=\beta\log\alpha+\log1
\]
一様コーシー列の定義
\[
\forall\epsilon>0,\exists N\in\mathbb{N},\forall x\in I;\left(N\leq m,n\right)\rightarrow d\left(f_{m}\left(x\right),f_{n}\left(x\right)\right)<\epsilon
\]
ルベーグの被覆補題
\[
\diam\left(A\right)<\delta\rightarrow A\subseteq U
\]
上限と下限・最大元と最小元・上極限と下極限との関係
\[
\inf_{n\in\mathbb{N}}\left(-a_{n}\right)=-\sup_{n\in\mathbb{N}}\left(a_{n}\right)
\]