γとπが出てくる定積分
γとπが出てくる定積分
\[ \int_{0}^{\infty}e^{-x}\log^{2}\left(x\right)dx=? \]
\[ \int_{0}^{\infty}e^{-x}\log^{2}\left(x\right)dx=? \]
\begin{align*}
\int_{0}^{\infty}e^{-x}\log^{2}\left(x\right)dx & =\left[\frac{d^{2}}{dt^{2}}\int_{0}^{\infty}e^{-x}x^{t}dx\right]_{t=0}\\
& =\left[\frac{d^{2}}{dt^{2}}\Gamma\left(t+1\right)\right]_{t=0}\\
& =\left[\frac{d}{dt}\Gamma\left(t+1\right)\frac{d}{dt}\log\left(\Gamma\left(t+1\right)\right)\right]_{t=0}\\
& =\left[\frac{d}{dt}\Gamma\left(t+1\right)\psi\left(t+1\right)\right]_{t=0}\\
& =\left[\psi\left(t+1\right)\frac{d}{dt}\Gamma\left(t+1\right)+\Gamma\left(t+1\right)\frac{d}{dt}\psi\left(t+1\right)\right]_{t=0}\\
& =\left[\psi\left(t+1\right)\Gamma\left(t+1\right)\psi\left(t+1\right)+\Gamma\left(t+1\right)\psi^{\left(1\right)}\left(t+1\right)\right]_{t=0}\\
& =\left[\Gamma\left(t+1\right)\left(\psi^{2}\left(t+1\right)+\psi^{\left(1\right)}\left(t+1\right)\right)\right]_{t=0}\\
& =\psi^{2}\left(1\right)+\psi^{\left(1\right)}\left(1\right)\\
& =\left(-\gamma\right)^{2}-\left(-1\right)^{1}1!\zeta\left(1+1\right)\\
& =\gamma^{2}+\zeta\left(2\right)\\
& =\gamma^{2}+\frac{\pi^{2}}{6}
\end{align*}
ページ情報
タイトル | γとπが出てくる定積分 |
URL | https://www.nomuramath.com/wioj9afq/ |
SNSボタン |
気付かないと解けないかも
\[
\int_{0}^{\infty}\frac{1}{\left(1+x\right)\left(a^{2}+\log^{2}x\right)}dx=?
\]
sinの3乗をxの2乗で割った定積分
\[
\int_{0}^{\infty}\frac{\sin^{3}x}{x^{2}}dx=?
\]
分母に正接がある関数の定積分
\[
\int_{0}^{\frac{\pi}{2}}\frac{x}{\tan x}dx=?
\]
分子が対数で分母が多項式の定積分
\[
\int_{0}^{\infty}\frac{\log x}{x^{n}+1}dx=?
\]