気付かないと解けないかも
気付かないと解けないかも
\(a\in\mathbb{R}\)とする。
このとき次の定積分を求めよ。
\[ \int_{0}^{\infty}\frac{1}{\left(1+x\right)\left(a^{2}+\log^{2}x\right)}dx=? \]
\(a\in\mathbb{R}\)とする。
このとき次の定積分を求めよ。
\[ \int_{0}^{\infty}\frac{1}{\left(1+x\right)\left(a^{2}+\log^{2}x\right)}dx=? \]
\begin{align*}
\int_{0}^{\infty}\frac{1}{\left(1+x\right)\left(a^{2}+\log^{2}x\right)}dx & =\int_{\infty}^{0}\frac{1}{\left(1+\frac{1}{y}\right)\left(a^{2}+\log^{2}x\right)}\left(-\frac{1}{y^{2}}\right)dy\cmt{y=\frac{1}{x}}\\
& =\int_{0}^{\infty}\frac{\frac{1}{y}}{\left(y+1\right)\left(a^{2}+\log^{2}x\right)}dy\\
& =\int_{0}^{\infty}\frac{1+\frac{1}{y}-1}{\left(y+1\right)\left(a^{2}+\log^{2}x\right)}dy\\
& =\int_{0}^{\infty}\frac{1+\frac{1}{y}}{\left(y+1\right)\left(a^{2}+\log^{2}x\right)}dy-\int_{0}^{\infty}\frac{1}{\left(y+1\right)\left(a^{2}+\log^{2}x\right)}dy\\
& =\frac{1}{2}\int_{0}^{\infty}\frac{1+\frac{1}{y}}{\left(y+1\right)\left(a^{2}+\log^{2}x\right)}dy\\
& =\frac{1}{2}\int_{0}^{\infty}\frac{y+1}{y\left(y+1\right)\left(a^{2}+\log^{2}x\right)}dy\\
& =\frac{1}{2}\int_{0}^{\infty}\frac{1}{y\left(a^{2}+\log^{2}x\right)}dy\\
& =\frac{1}{2}\int_{-\infty}^{\infty}\frac{1}{a^{2}+\log^{2}y}d\log y\\
& =\frac{1}{2}\left[\frac{1}{a}\tan^{\bullet}\left(\frac{\log y}{a}\right)\right]_{\log y\rightarrow-\infty}^{\log y\rightarrow\infty}\\
& =\frac{1}{2a}\left(\frac{\pi}{2}\sgn\left(a\right)-\left(-\frac{\pi}{2}\sgn\left(a\right)\right)\right)\\
& =\frac{\pi}{2a}\sgn\left(a\right)\\
& =\frac{\pi}{2\left|a\right|}
\end{align*}
ページ情報
タイトル | 気付かないと解けないかも |
URL | https://www.nomuramath.com/vzea617z/ |
SNSボタン |
指数関数を分母と分子に含む対数の定積分
\[
\int_{0}^{\infty}\log\left(\frac{e^{x}-1}{e^{x}+1}\right)dx=?
\]
床関数の総和の2乗の定積分
\[
\int_{0}^{1}\left(\sum_{k=1}^{\infty}\frac{\left\lfloor 2^{k}x\right\rfloor }{3^{k}}\right)^{2}dx=?
\]
γとπが出てくる定積分
\[
\int_{0}^{\infty}e^{-x}\log^{2}\left(x\right)dx=?
\]
分母の2乗をどうするかな?
\[
\int_{0}^{\infty}\frac{x^{2}}{\left(1+e^{x}\right)^{2}}dx=?
\]