気付かないと解けないかも
気付かないと解けないかも
\(a\in\mathbb{R}\)とする。
このとき次の定積分を求めよ。
\[ \int_{0}^{\infty}\frac{1}{\left(1+x\right)\left(a^{2}+\log^{2}x\right)}dx=? \]
\(a\in\mathbb{R}\)とする。
このとき次の定積分を求めよ。
\[ \int_{0}^{\infty}\frac{1}{\left(1+x\right)\left(a^{2}+\log^{2}x\right)}dx=? \]
\begin{align*}
\int_{0}^{\infty}\frac{1}{\left(1+x\right)\left(a^{2}+\log^{2}x\right)}dx & =\int_{\infty}^{0}\frac{1}{\left(1+\frac{1}{y}\right)\left(a^{2}+\log^{2}x\right)}\left(-\frac{1}{y^{2}}\right)dy\cmt{y=\frac{1}{x}}\\
& =\int_{0}^{\infty}\frac{\frac{1}{y}}{\left(y+1\right)\left(a^{2}+\log^{2}x\right)}dy\\
& =\int_{0}^{\infty}\frac{1+\frac{1}{y}-1}{\left(y+1\right)\left(a^{2}+\log^{2}x\right)}dy\\
& =\int_{0}^{\infty}\frac{1+\frac{1}{y}}{\left(y+1\right)\left(a^{2}+\log^{2}x\right)}dy-\int_{0}^{\infty}\frac{1}{\left(y+1\right)\left(a^{2}+\log^{2}x\right)}dy\\
& =\frac{1}{2}\int_{0}^{\infty}\frac{1+\frac{1}{y}}{\left(y+1\right)\left(a^{2}+\log^{2}x\right)}dy\\
& =\frac{1}{2}\int_{0}^{\infty}\frac{y+1}{y\left(y+1\right)\left(a^{2}+\log^{2}x\right)}dy\\
& =\frac{1}{2}\int_{0}^{\infty}\frac{1}{y\left(a^{2}+\log^{2}x\right)}dy\\
& =\frac{1}{2}\int_{-\infty}^{\infty}\frac{1}{a^{2}+\log^{2}y}d\log y\\
& =\frac{1}{2}\left[\frac{1}{a}\tan^{\bullet}\left(\frac{\log y}{a}\right)\right]_{\log y\rightarrow-\infty}^{\log y\rightarrow\infty}\\
& =\frac{1}{2a}\left(\frac{\pi}{2}\sgn\left(a\right)-\left(-\frac{\pi}{2}\sgn\left(a\right)\right)\right)\\
& =\frac{\pi}{2a}\sgn\left(a\right)\\
& =\frac{\pi}{2\left|a\right|}
\end{align*}
ページ情報
タイトル | 気付かないと解けないかも |
URL | https://www.nomuramath.com/vzea617z/ |
SNSボタン |
ガンマ関数を2つ含む定積分でカタラン定数が出てきます
\[
\int_{0}^{\frac{1}{2}}\Gamma\left(1-x\right)\Gamma\left(1+x\right)dx=?
\]
複素ガンマ関数2つを含む広義積分
\[
\int_{-\infty}^{\infty}\Gamma\left(1-ix\right)\Gamma\left(1+ix\right)dx=?
\]
分母に(1+x²)²を含む積分
\[
\int\frac{1}{\left(1+x^{2}\right)^{2}}dx=\frac{1}{2}\tan^{\bullet}x+\frac{x}{2\left(1+x^{2}\right)}+C
\]
tanの立方根の積分
\[
\int\sqrt[3]{\tan x}dx=\frac{1}{4}\log\left(\tan^{\frac{4}{3}}x-\tan^{\frac{2}{3}}x+1\right)+\frac{\sqrt{3}}{2}\tan^{\bullet}\left(\frac{2\tan^{\frac{2}{3}}x-1}{\sqrt{3}}\right)-\frac{1}{2}\log\left(\tan^{\frac{2}{3}}x+1\right)+C
\]