円に外接する4角形の面積
円に外接する4角形の面積
4角形\(ABCD\)が円に外接するとき辺の長さを順に\(a,b,c,d\)とすると面積\(S\)は、
\[ S=\sqrt{abcd}\sin\frac{A+C}{2} \] となる。
4角形\(ABCD\)が円に外接するとき辺の長さを順に\(a,b,c,d\)とすると面積\(S\)は、
\[ S=\sqrt{abcd}\sin\frac{A+C}{2} \] となる。
半周長を
\[ s=\frac{a+b+c+d}{2} \] とする。
4角形が円に外接しているとき対辺の和が等しいので、
\begin{align*} s-a & =\frac{a+b+c+d}{2}-a\\ & =\frac{-a+c+b+d}{2}\\ & =\frac{-a+c+a+c}{2}\\ & =c \end{align*} となる。
同様に、\(s-b=d,s-c=a,s-d=b\)となるので、ブレートシュナイダーの公式より、
\begin{align*} S & =\sqrt{\left(s-a\right)\left(s-b\right)\left(s-c\right)\left(s-d\right)-abcd\cos^{2}\frac{A+C}{2}}\\ & =\sqrt{cdab-abcd\cos^{2}\frac{A+C}{2}}\\ & =\sqrt{abcd}\sqrt{1-\cos^{2}\frac{A+C}{2}}\\ & =\sqrt{abcd}\sqrt{\sin^{2}\frac{A+C}{2}}\\ & =\sqrt{abcd}\left|\sin\frac{A+C}{2}\right|\\ & =\sqrt{abcd}\sin\frac{A+C}{2} \end{align*} となる。
\[ s=\frac{a+b+c+d}{2} \] とする。
4角形が円に外接しているとき対辺の和が等しいので、
\begin{align*} s-a & =\frac{a+b+c+d}{2}-a\\ & =\frac{-a+c+b+d}{2}\\ & =\frac{-a+c+a+c}{2}\\ & =c \end{align*} となる。
同様に、\(s-b=d,s-c=a,s-d=b\)となるので、ブレートシュナイダーの公式より、
\begin{align*} S & =\sqrt{\left(s-a\right)\left(s-b\right)\left(s-c\right)\left(s-d\right)-abcd\cos^{2}\frac{A+C}{2}}\\ & =\sqrt{cdab-abcd\cos^{2}\frac{A+C}{2}}\\ & =\sqrt{abcd}\sqrt{1-\cos^{2}\frac{A+C}{2}}\\ & =\sqrt{abcd}\sqrt{\sin^{2}\frac{A+C}{2}}\\ & =\sqrt{abcd}\left|\sin\frac{A+C}{2}\right|\\ & =\sqrt{abcd}\sin\frac{A+C}{2} \end{align*} となる。
ページ情報
タイトル | 円に外接する4角形の面積 |
URL | https://www.nomuramath.com/e1cyjxv3/ |
SNSボタン |
5心(重心・内心・外心・垂心・傍心)の定義
3角形の角度と長さの関係
\[
a\cos A+b\cos B+c\cos C=\frac{8S^{2}}{abc}
\]
オイラーの定理
\[
p^{2}q^{2}=a^{2}c^{2}+b^{2}d^{2}-2abcd\cos\left(A+C\right)
\]
4角形の対角線と面積の関係
\[
S=\frac{1}{2}\left(\overrightarrow{AC}\times\overrightarrow{DB}\right)
\]