多重階乗と拡張多重階乗の定義
多重階乗と拡張多重階乗の定義
\[ n!_{k}=\frac{\left(n+k\right)!_{k}}{n+k} \] で定義する。
(1)多重階乗
\(n>0\)のとき、
\[ n!_{k}=\begin{cases} 1 & -k<n\leq0\\ n\left(\left(n-k\right)!_{k}\right) & 0<n \end{cases} \] で定義する。\(n<0\)のとき
漸化式\(n!_{k}=n\left(\left(n-k\right)!_{k}\right)\)より、\[ n!_{k}=\frac{\left(n+k\right)!_{k}}{n+k} \] で定義する。
(2)拡張多重階乗
\[ \left(x\right)!^{n}=n^{\frac{x-1}{n}}\frac{\left(\frac{x}{n}\right)!}{\left(\frac{1}{n}\right)!} \]*
2つの定義は異なる定義です。ページ情報
タイトル | 多重階乗と拡張多重階乗の定義 |
URL | https://www.nomuramath.com/a1cmrd5c/ |
SNSボタン |
多重階乗の階乗表示
\[
\left(qn+r\right)!_{n}=r!_{n}n^{q}\frac{\left(q+\frac{r}{n}\right)!}{\left(\frac{r}{n}\right)!}
\]
負の多重階乗
\[
\left(-\left(qn+r\right)\right)!_{n}=\frac{\left(-1\right)^{q}}{\left(qn-\left(n-r\right)\right)!_{n}}
\]
2重階乗の逆数和
\[
\sum_{k=0}^{n}\frac{1}{\left(2k\right)!!}=\sqrt{e}\frac{\Gamma\left(n+1,\frac{1}{2}\right)}{\Gamma\left(n+1\right)}
\]
拡張多重階乗の漸化式
\[
x!^{n}=x\left(x-n\right)!^{n}
\]