三角関数と双曲線関数の半角公式
三角関数の半角公式
(1)
\[ \sin^{2}\frac{x}{2}=\frac{1-\cos x}{2} \](2)
\[ \cos^{2}\frac{x}{2}=\frac{1+\cos x}{2} \](3)
\[ \tan^{2}\frac{x}{2}=\frac{1-\cos x}{1+\cos x} \](1)
2倍角の公式\[ \cos2\frac{x}{2}=1-2\sin^{2}\frac{x}{2} \] より、
\[ \sin^{2}\frac{x}{2}=\frac{1-\cos x}{2} \]
(2)
2倍角の公式\[ \cos2\frac{x}{2}=2\cos^{2}\frac{x}{2}-1 \] より、
\[ \cos^{2}\frac{x}{2}=\frac{1+\cos x}{2} \]
(3)
\begin{align*} \tan^{2}\frac{x}{2} & =\frac{\sin^{2}\frac{x}{2}}{\cos^{2}\frac{x}{2}}\\ & =\frac{1-\cos x}{1+\cos x} \end{align*}双曲線関数の半角公式
(1)
\[ \sinh^{2}\frac{x}{2}=\frac{\cosh x-1}{2} \](2)
\[ \cosh^{2}\frac{x}{2}=\frac{\cosh x+1}{2} \](3)
\[ \tanh^{2}\frac{x}{2}=\frac{\cosh x-1}{\cosh x+1} \](1)
\begin{align*} \sinh^{2}\frac{x}{2} & =-\sin^{2}\frac{ix}{2}\\ & =-\frac{1-\cos ix}{2}\\ & =\frac{\cosh x-1}{2} \end{align*}(2)
\begin{align*} \cosh^{2}\frac{x}{2} & =\cos^{2}\frac{ix}{2}\\ & =\frac{1+\cos ix}{2}\\ & =\frac{\cosh x+1}{2} \end{align*}(3)
\begin{align*} \tanh^{2}\frac{x}{2} & =\frac{\sinh^{2}\frac{x}{2}}{\cosh^{2}\frac{x}{2}}\\ & =\frac{\cosh x-1}{\cosh x+1} \end{align*}ページ情報
タイトル | 三角関数と双曲線関数の半角公式 |
URL | https://www.nomuramath.com/aeq4cukk/ |
SNSボタン |
逆三角関数と逆双曲線関数の級数表示
\[
\sin^{\bullet}x=\sum_{k=0}^{\infty}\frac{C\left(2k,k\right)}{4^{k}(2k+1)}x^{2k+1}\qquad,(|x|\leq1)
\]
三角関数(双曲線関数)の対数とリーマン・ゼータ関数
\[
\log\left(\sin\left(\pi x\right)\right)=\log\left(\pi x\right)-\sum_{k=1}^{\infty}\frac{\zeta\left(2k\right)}{k}x^{2k}
\]
3角関数・双曲線関数の還元公式(負角・余角・補角)
\[
\sin(-x)=-\sin x
\]
逆三角関数と逆双曲線関数の冪乗積分漸化式
\[
\int\sin^{\bullet,n}xdx=x\sin^{\bullet,n}x+n\sqrt{1-x^{2}}\sin^{\bullet,n-1}x-n(n-1)\int\sin^{\bullet,n-2}xdx
\]