三角関数と双曲線関数の対数
三角関数の対数
対数を多価関数とすると以下が成り立つ。
対数を多価関数とすると以下が成り立つ。
(1)
\[ \log\sin x=-\log2+\frac{\pi}{2}i-ix-Li_{1}\left(e^{2ix}\right) \](2)
\[ \log\cos x=-\log2-ix-Li_{1}\left(-e^{2ix}\right) \](3)
\[ \log\tan x=\frac{\pi}{2}i-Li_{1}\left(e^{2ix}\right)+Li_{1}\left(-e^{2ix}\right)+\log1 \](1)
\begin{align*} \log\sin x & =\log\frac{e^{ix}-e^{-ix}}{2i}\\ & =\log\frac{ie^{-ix}}{2}+\log\left(1-e^{2ix}\right)\\ & =-\log2+\frac{\pi}{2}i-ix-Li_{1}\left(e^{2ix}\right) \end{align*}(2)
\begin{align*} \log\cos x & =\log\frac{e^{ix}+e^{-ix}}{2}\\ & =\log\frac{e^{-ix}}{2}+\log\left(1+e^{2ix}\right)\\ & =-\log2-ix-Li_{1}\left(-e^{2ix}\right) \end{align*}(3)
\begin{align*} \log\tan x & =\log\sin x-\log\cos x\\ & =\frac{\pi}{2}i-Li_{1}\left(e^{2ix}\right)+Li_{1}\left(-e^{2ix}\right)+\log1 \end{align*}双曲線関数の対数
対数を多価関数とすると以下が成り立つ。
対数を多価関数とすると以下が成り立つ。
(1)
\[ \log\sinh x=-\log2+x-Li_{1}\left(e^{-2x}\right) \](2)
\[ \log\cosh x=-\log2+x-Li_{1}\left(-e^{-2x}\right) \](3)
\[ \log\tanh x=-Li_{1}\left(e^{-2x}\right)+Li_{1}\left(-e^{-2x}\right)+\log1 \](1)
\begin{align*} \log\sinh x & =\log\left(\frac{1}{i}\sin\left(ix\right)\right)\\ & =-\log i+\log\left(\sin\left(ix\right)\right)\\ & =-\frac{\pi}{2}i-\log2+\frac{\pi}{2}i+x-Li_{1}\left(e^{-2x}\right)\\ & =-\log2+x-Li_{1}\left(e^{-2x}\right) \end{align*}(2)
\begin{align*} \log\cosh x & =\log\cos\left(ix\right)\\ & =-\log2+x-Li_{1}\left(-e^{-2x}\right) \end{align*}(3)
\begin{align*} \log\tanh x & =\log\sinh x-\log\cosh x\\ & =-Li_{1}\left(e^{-2x}\right)+Li_{1}\left(-e^{-2x}\right)+\log1 \end{align*}(3)-2
\begin{align*} \log\tanh x & =\log\left(\frac{1}{i}\tan\left(ix\right)\right)\\ & =-\log i+\log\left(\tan\left(ix\right)\right)\\ & =-\frac{\pi}{2}i+\frac{\pi}{2}i-Li_{1}\left(e^{-2x}\right)+Li_{1}\left(-e^{-2x}\right)+\log1\\ & =-Li_{1}\left(e^{-2x}\right)+Li_{1}\left(-e^{-2x}\right)+\log1 \end{align*}ページ情報
タイトル | 三角関数と双曲線関数の対数 |
URL | https://www.nomuramath.com/ag3vh1ei/ |
SNSボタン |
三角関数と双曲線関数の加法定理
\[
\sin(x\pm y)=\sin x\cos y\pm\cos x\sin y
\]
双曲線関数と三角関数の級数展開
\[
\tanh x=\sum_{k=1}^{\infty}\frac{2^{2k}\left(2^{2k}-1\right)B_{2k}}{(2k)!}x{}^{2k-1}
\]
逆三角関数の三角関数と逆双曲線関数の双曲線関数
\[
\sin\Cos^{\bullet}z=\sqrt{1-z^{2}}
\]
三角関数と双曲線関数の対数の積分
\[
\int\Log\sin^{\alpha}zdz=z\Log\sin^{\alpha}x+\frac{i\alpha}{2}z^{2}+\alpha z\Li_{1}\left(e^{2iz}\right)+\frac{i\alpha}{2}\Li_{2}\left(e^{2iz}\right)+\C{}
\]