円周率
円の周長を\(L\)、直径を\(d\)としたとき円周率\(\pi\)を
\[ \pi=\frac{L}{d} \] で定義する。
\[ \pi=\frac{L}{d} \] で定義する。
\[
\pi=2\int_{0}^{1}\frac{1}{\sqrt{1-x^{2}}}dx
\]
が成り立つ。
円周率の定義より、半径\(r\)の円を考えると、
\begin{align*} \pi & =\frac{2}{2r}\int_{-r}^{r}\sqrt{\left(\frac{d}{dx}x\right)^{2}+\left(\frac{d}{dx}\sqrt{r^{2}-x^{2}}\right)^{2}}dx\\ & =\frac{1}{r}\int_{-r}^{r}\sqrt{1+\frac{x^{2}}{r^{2}-x^{2}}}dx\\ & =\frac{2}{r}\int_{0}^{r}\frac{r}{\sqrt{r^{2}-x^{2}}}dx\\ & =2\int_{0}^{1}\frac{1}{\sqrt{1-t^{2}}}dt\qquad\text{(x=rtとおいた)} \end{align*} となる。これより与式は成り立つ。
\begin{align*} \pi & =\frac{2}{2r}\int_{-r}^{r}\sqrt{\left(\frac{d}{dx}x\right)^{2}+\left(\frac{d}{dx}\sqrt{r^{2}-x^{2}}\right)^{2}}dx\\ & =\frac{1}{r}\int_{-r}^{r}\sqrt{1+\frac{x^{2}}{r^{2}-x^{2}}}dx\\ & =\frac{2}{r}\int_{0}^{r}\frac{r}{\sqrt{r^{2}-x^{2}}}dx\\ & =2\int_{0}^{1}\frac{1}{\sqrt{1-t^{2}}}dt\qquad\text{(x=rtとおいた)} \end{align*} となる。これより与式は成り立つ。
ページ情報
タイトル | 円周率 |
URL | https://www.nomuramath.com/agdnktsy/ |
SNSボタン |
関数の極限
\[
\forall\epsilon>0,\exists\delta>0;\forall x\in\mathbb{R},0<\left|x-a\right|<\delta\Rightarrow\left|f\left(x\right)-b\right||<\epsilon
\]
ウォリスの公式
\[
\prod_{k=1}^{\infty}\left(\frac{(2k)^{2}}{(2k-1)(2k+1)}\right)=\frac{\pi}{2}
\]
対数の公式
\[
\log M-\log N=\log\frac{M}{N}
\]
対数の基本公式
\[
\log M+\log N=\log MN
\]