引き分けがある場合の勝率・敗率

引き分けがある場合の勝率・敗率
\(A\)さん、\(B\)さんがあるゲームで勝負をします。

(1)

1回ゲームをしたときに\(A\)さんが勝つ確率を\(p_{A}\)、\(B\)さんが勝つ確率を\(p_{B}\)、引き分けの確率を\(p_{C}\)とする。
このとき、引き分け時にどちらかが勝つまでゲームを続けると続けると\(A\)さんの勝率\(P_{A}\)と\(B\)さんの勝率\(P_{B}\)は
\[ P_{A}=\frac{p_{A}}{p_{A}+p_{B}} \] \[ P_{B}=\frac{p_{B}}{p_{A}+p_{B}} \] となる。

(2)

1回ゲームをしたときに\(A\)さんが勝つ確率を\(p_{A}\)、\(B\)さんが勝つ確率を\(p_{B}\)、引き分けの確率を\(p_{C}\)とする。
一度引き分けがでた後は\(A\)さんが勝つ確率を\(p_{2,A}\)、\(B\)さんが勝つ確率を\(p_{2,B}\)、引き分けの確率を\(p_{2,C}\)とする。
このとき、引き分け時にどちらかが勝つまでゲームを続けると続けると\(A\)さんの勝率\(P_{A}\)と\(B\)さんの勝率\(P_{B}\)は、
\[ P_{A}=p_{A}+\frac{p_{2,A}}{p_{2,A}+p_{2,B}}p_{C} \] \[ P_{B}=p_{B}+\frac{p_{2,B}}{p_{2,A}+p_{2,B}}p_{C} \] となる。

(3)

1回ゲームをしたときに\(A\)さんが勝つ確率を\(p_{0,A}\)、\(B\)さんが勝つ確率を\(p_{0,B}\)、引き分け1の確率を\(p_{0,1}\)、引き分け2の確率を\(p_{0,2}\)とする。
最後に引き分け1がでた後は\(A\)さんが勝つ確率を\(p_{1,A}\)、\(B\)さんが勝つ確率を\(p_{1,B}\)、引き分け1の確率を\(p_{1,1C}\)、引き分け2の確率を\(p_{1,2C}\)とする。
最後に引き分け2がでた後は\(A\)さんが勝つ確率を\(p_{2,A}\)、\(B\)さんが勝つ確率を\(p_{2,B}\)、引き分け1の確率を\(p_{2,1C}\)、引き分け2の確率を\(p_{2,2C}\)とする。
このとき、引き分け時にどちらかが勝つまでゲームを続けると続けると\(A\)さんの勝率\(P_{A}\)と\(B\)さんの勝率\(P_{B}\)は、
\[ P_{A}=p_{0,A}+\frac{1}{1-p_{1,1C}-p_{2,2C}+p_{1,1C}p_{2,2C}-p_{1,2C}p_{2,1C}}\left(\begin{array}{cc} p_{0,1C} & p_{0,2C}\end{array}\right)\left(\begin{array}{cc} 1-p_{2,2C} & p_{1,2C}\\ p_{2,1C} & 1-p_{1,1C} \end{array}\right)\left(\begin{array}{c} p_{1,A}\\ p_{2,A} \end{array}\right) \] \[ P_{B}=p_{0,B}+\frac{1}{1-p_{1,1C}-p_{2,2C}+p_{1,1C}p_{2,2C}-p_{1,2C}p_{2,1C}}\left(\begin{array}{cc} p_{0,1C} & p_{0,2C}\end{array}\right)\left(\begin{array}{cc} 1-p_{2,2C} & -p_{1,2C}\\ -p_{2,1C} & 1-p_{1,1C} \end{array}\right)\left(\begin{array}{c} p_{1,B}\\ p_{2,B} \end{array}\right) \] となる。
(2)で\(A\)の勝率\(P_{A}\)は1回目の勝率\(p_{A}\)と引き分け時に勝負が付くまで繰り返したときの勝率\(\frac{p_{2,A}}{p_{2,A}+p_{2,B}}\)と1回目の引き分けの確率\(p_{C}\)を掛けたもの\(\frac{p_{2,A}}{p_{2,A}+p_{2,B}}p_{C}\)の和\(P_{A}=p_{A}+\frac{p_{2,A}}{p_{2,A}+p_{2,B}}p_{C}\)となる。

(1)

\(A\)さんの勝率は、
\begin{align*} P_{A} & =\sum_{k=0}^{\infty}p_{C}^{k}p_{A}\\ & =p_{A}\sum_{k=0}^{\infty}p_{C}^{k}\\ & =p_{A}\frac{1}{1-p_{c}}\\ & =\frac{p_{A}}{1-\left(1-\left(p_{A}+p_{B}\right)\right)}\\ & =\frac{p_{A}}{p_{A}+p_{B}} \end{align*} となり、\(B\)さんの勝率は\(1-\frac{p_{A}}{p_{A}+p_{B}}=\frac{p_{B}}{p_{A}+p_{B}}\)となる。
従って題意は成り立つ。

(2)

\(A\)さんの勝率は、
\begin{align*} P_{A} & =p_{A}+p_{C}\sum_{k=0}^{\infty}\left(p_{C}'\right)^{k}p_{A}'\\ & =p_{A}+p_{A}'p_{C}\sum_{k=0}^{\infty}\left(p_{C}'\right)^{k}\\ & =p_{A}+p_{A}'p_{C}\frac{1}{1-P_{c}'}\\ & =p_{A}+\frac{p_{A}'}{1-\left(1-\left(p_{A}'+p_{B}'\right)\right)}p_{C}\\ & =p_{A}+\frac{p_{A}'}{p_{A}'+p_{B}'}p_{C} \end{align*} となり、\(B\)さんの勝率は
\begin{align*} P_{B} & =1-\left(p_{A}+\frac{p_{A}'}{p_{A}'+p_{B}'}p_{C}\right)\\ & =1-p_{A}-\frac{p_{A}'}{p_{A}'+p_{B}'}p_{C}\\ & =p_{B}+p_{C}-\frac{p_{A}'}{p_{A}'+p_{B}'}p_{C}\\ & =p_{B}+\left(1-\frac{p_{A}'}{p_{A}'+p_{B}'}\right)p_{C}\\ & =p_{B}+\frac{p_{B}'}{p_{A}'+p_{B}'}p_{C} \end{align*} となる。
従って題意は成り立つ。

(3)

\(A\)さんが勝つには最初に勝つか、引き分けの後に勝つかなので、\(A\)さんの勝率は
\begin{align*} P_{A} & =p_{0,A}+\sum_{n=1}^{\infty}\sum_{j_{1},j_{2},\cdots,j_{n}\in\left\{ 1,2\right\} }p_{0,j_{1}C}p_{j_{1},j_{2}C}p_{j_{2},j_{3}C}\cdots p_{j_{n-1},j_{n}C}p_{j_{n},A}\\ & =p_{0,A}+\sum_{n=1}^{\infty}\left(\begin{array}{cc} p_{0,1C} & p_{0,2C}\end{array}\right)\underset{n-1\text{個}}{\underbrace{\left(\begin{array}{cc} p_{1,1C} & p_{1,2C}\\ p_{2,1C} & p_{2,2C} \end{array}\right)\left(\begin{array}{cc} p_{1,1C} & p_{1,2C}\\ p_{2,1C} & p_{2,2C} \end{array}\right)\cdots\left(\begin{array}{cc} p_{1,1C} & p_{1,2C}\\ p_{2,1C} & p_{2,2C} \end{array}\right)}}\left(\begin{array}{c} p_{1,A}\\ p_{2,A} \end{array}\right)\\ & =p_{0,A}+\sum_{n=1}^{\infty}\left(\begin{array}{cc} p_{0,1C} & p_{0,2C}\end{array}\right)\left(\begin{array}{cc} p_{1,1C} & p_{1,2C}\\ p_{2,1C} & p_{2,2C} \end{array}\right)^{n-1}\left(\begin{array}{c} p_{1,A}\\ p_{2,A} \end{array}\right)\\ & =p_{0,A}+\left(\begin{array}{cc} p_{0,1C} & p_{0,2C}\end{array}\right)\sum_{n=0}^{\infty}\left(\begin{array}{cc} p_{1,1C} & p_{1,2C}\\ p_{2,1C} & p_{2,2C} \end{array}\right)^{n}\left(\begin{array}{c} p_{1,A}\\ p_{2,A} \end{array}\right)\\ & =p_{0,A}+\left(\begin{array}{cc} p_{0,1C} & p_{0,2C}\end{array}\right)\left(I_{2}-\left(\begin{array}{cc} p_{1,1C} & p_{1,2C}\\ p_{2,1C} & p_{2,2C} \end{array}\right)\right)^{-1}\left(\begin{array}{c} p_{1,A}\\ p_{2,A} \end{array}\right)\\ & =p_{0,A}+\left(\begin{array}{cc} p_{0,1C} & p_{0,2C}\end{array}\right)\left(\begin{array}{cc} 1-p_{1,1C} & -p_{1,2C}\\ -p_{2,1C} & 1-p_{2,2C} \end{array}\right)^{-1}\left(\begin{array}{c} p_{1,A}\\ p_{2,A} \end{array}\right)\\ & =p_{0,A}+\left(\begin{array}{cc} p_{0,1C} & p_{0,2C}\end{array}\right)\frac{1}{\left(1-p_{1,1C}\right)\left(1-p_{2,2C}\right)-p_{1,2C}p_{2,1C}}\left(\begin{array}{cc} 1-p_{2,2C} & p_{1,2C}\\ p_{2,1C} & 1-p_{1,1C} \end{array}\right)\left(\begin{array}{c} p_{1,A}\\ p_{2,A} \end{array}\right)\\ & =p_{0,A}+\frac{1}{\left(1-p_{1,1C}\right)\left(1-p_{2,2C}\right)-p_{1,2C}p_{2,1C}}\left(\begin{array}{cc} p_{0,1C} & p_{0,2C}\end{array}\right)\left(\begin{array}{cc} 1-p_{2,2C} & p_{1,2C}\\ p_{2,1C} & 1-p_{1,1C} \end{array}\right)\left(\begin{array}{c} p_{1,A}\\ p_{2,A} \end{array}\right)\\ & =p_{0,A}+\frac{1}{1-p_{1,1C}-p_{2,2C}+p_{1,1C}p_{2,2C}-p_{1,2C}p_{2,1C}}\left(\begin{array}{cc} p_{0,1C} & p_{0,2C}\end{array}\right)\left(\begin{array}{cc} 1-p_{2,2C} & p_{1,2C}\\ p_{2,1C} & 1-p_{1,1C} \end{array}\right)\left(\begin{array}{c} p_{1,A}\\ p_{2,A} \end{array}\right) \end{align*} となる。
逆行列の存在については、
\[ 0<p_{1,1C}+p_{1,2C}<1 \] \[ 0<p_{2,1C}+p_{2,2C}<1 \] であるので、
\begin{align*} 1-p_{1,1C}-p_{2,2C}+p_{1,1C}p_{2,2C}-p_{1,2C}p_{2,1C} & =\det\left(\begin{array}{cc} 1-p_{1,1C} & -p_{1,2C}\\ -p_{2,1C} & 1-p_{2,2C} \end{array}\right)\\ & =\left(1-p_{1,1C}\right)\left(1-p_{2,2C}\right)-p_{1,2C}p_{2,1C}\\ & >p_{1,2C}p_{2,1C}-p_{1,2C}p_{2,1C}\\ & =0 \end{align*} となり、行列式が0でないので逆行列は存在する。
\(B\)さんの勝率は余事象より、
\begin{align*} P_{B} & =1-P_{A}\\ & =1-\left\{ p_{0,A}+\frac{1}{1-p_{1,1C}-p_{2,2C}+p_{1,1C}p_{2,2C}-p_{1,2C}p_{2,1C}}\left(\begin{array}{cc} p_{0,1C} & p_{0,2C}\end{array}\right)\left(\begin{array}{cc} 1-p_{2,2C} & p_{1,2C}\\ p_{2,1C} & 1-p_{1,1C} \end{array}\right)\left(\begin{array}{c} p_{1,A}\\ p_{2,A} \end{array}\right)\right\} \\ & =1-\left\{ 1-\left(p_{0,B}+p_{0,1C}+p_{0,2C}\right)+\frac{1}{1-p_{1,1C}-p_{2,2C}+p_{1,1C}p_{2,2C}-p_{1,2C}p_{2,1C}}\left(\begin{array}{cc} p_{0,1C} & p_{0,2C}\end{array}\right)\left(\begin{array}{cc} 1-p_{2,2C} & p_{1,2C}\\ p_{2,1C} & 1-p_{1,1C} \end{array}\right)\left(\begin{array}{c} 1-\left(p_{1,B}+p_{1,1C}+p_{1,2C}\right)\\ 1-\left(p_{2,B}+p_{2,1C}+p_{2,2C}\right) \end{array}\right)\right\} \\ & =1-1+p_{0,B}+p_{0,1C}+p_{0,2C}-\frac{1}{1-p_{1,1C}-p_{2,2C}+p_{1,1C}p_{2,2C}-p_{1,2C}p_{2,1C}}\left(\begin{array}{cc} p_{0,1C} & p_{0,2C}\end{array}\right)\left(\begin{array}{cc} 1-p_{2,2C} & p_{1,2C}\\ p_{2,1C} & 1-p_{1,1C} \end{array}\right)\left\{ \left(\begin{array}{c} -p_{1,B}\\ -p_{2,B} \end{array}\right)+\left(\begin{array}{c} 1-\left(p_{1,1C}+p_{1,2C}\right)\\ 1-\left(p_{2,1C}+p_{2,2C}\right) \end{array}\right)\right\} \\ & =p_{0,B}+p_{0,1C}+p_{0,2C}-\frac{1}{1-p_{1,1C}-p_{2,2C}+p_{1,1C}p_{2,2C}-p_{1,2C}p_{2,1C}}\left\{ \left(\begin{array}{cc} p_{0,1C} & p_{0,2C}\end{array}\right)\left(\begin{array}{cc} 1-p_{2,2C} & p_{1,2C}\\ p_{2,1C} & 1-p_{1,1C} \end{array}\right)\left(\begin{array}{c} -p_{1,B}\\ -p_{2,B} \end{array}\right)+\left(\begin{array}{cc} p_{0,1C} & p_{0,2C}\end{array}\right)\left(\begin{array}{cc} 1-p_{2,2C} & p_{1,2C}\\ p_{2,1C} & 1-p_{1,1C} \end{array}\right)\left(\begin{array}{c} 1-\left(p_{1,1C}+p_{1,2C}\right)\\ 1-\left(p_{2,1C}+p_{2,2C}\right) \end{array}\right)\right\} \\ & =p_{0,B}+p_{0,1C}+p_{0,2C}-\frac{1}{1-p_{1,1C}-p_{2,2C}+p_{1,1C}p_{2,2C}-p_{1,2C}p_{2,1C}}\left\{ \left(\begin{array}{cc} p_{0,1C} & p_{0,2C}\end{array}\right)\left(\begin{array}{cc} 1-p_{2,2C} & p_{1,2C}\\ p_{2,1C} & 1-p_{1,1C} \end{array}\right)\left(\begin{array}{c} -p_{1,B}\\ -p_{2,B} \end{array}\right)+\left(\begin{array}{cc} p_{0,1C} & p_{0,2C}\end{array}\right)\left(\begin{array}{c} \left(1-p_{2,2C}\right)\left(1-\left(p_{1,1C}+p_{1,2C}\right)\right)+p_{1,2C}\left(1-\left(p_{2,1C}+p_{2,2C}\right)\right)\\ p_{2,1C}\left(1-\left(p_{1,1C}+p_{1,2C}\right)\right)+\left(1-p_{1,1C}\right)\left(1-\left(p_{2,1C}+p_{2,2C}\right)\right) \end{array}\right)\right\} \\ & =p_{0,B}+p_{0,1C}+p_{0,2C}-\frac{1}{1-p_{1,1C}-p_{2,2C}+p_{1,1C}p_{2,2C}-p_{1,2C}p_{2,1C}}\left\{ \left(\begin{array}{cc} p_{0,1C} & p_{0,2C}\end{array}\right)\left(\begin{array}{cc} 1-p_{2,2C} & -p_{1,2C}\\ -p_{2,1C} & 1-p_{1,1C} \end{array}\right)\left(\begin{array}{c} -p_{1,B}\\ -p_{2,B} \end{array}\right)+\left(\begin{array}{cc} p_{0,1C} & p_{0,2C}\end{array}\right)\left(\begin{array}{c} 1-p_{1,1C}-p_{2,2C}+p_{2,2C}p_{1,1C}-p_{1,2C}p_{2,1C}\\ 1-p_{1,1C}-p_{2,2C}+p_{1,1C}p_{2,2C}-p_{2,1C}p_{1,2C} \end{array}\right)\right\} \\ & =p_{0,B}+p_{0,1C}+p_{0,2C}-\left\{ \frac{1}{1-p_{1,1C}-p_{2,2C}+p_{1,1C}p_{2,2C}-p_{1,2C}p_{2,1C}}\left(\begin{array}{cc} p_{0,1C} & p_{0,2C}\end{array}\right)\left(\begin{array}{cc} 1-p_{2,2C} & -p_{1,2C}\\ -p_{2,1C} & 1-p_{1,1C} \end{array}\right)\left(\begin{array}{c} -p_{1,B}\\ -p_{2,B} \end{array}\right)+\left(\begin{array}{cc} p_{0,1C} & p_{0,2C}\end{array}\right)\left(\begin{array}{c} 1\\ 1 \end{array}\right)\right\} \\ & =p_{0,B}+p_{0,1C}+p_{0,2C}-\left\{ \frac{1}{1-p_{1,1C}-p_{2,2C}+p_{1,1C}p_{2,2C}-p_{1,2C}p_{2,1C}}\left(\begin{array}{cc} p_{0,1C} & p_{0,2C}\end{array}\right)\left(\begin{array}{cc} 1-p_{2,2C} & -p_{1,2C}\\ -p_{2,1C} & 1-p_{1,1C} \end{array}\right)\left(\begin{array}{c} -p_{1,B}\\ -p_{2,B} \end{array}\right)+p_{0,1C}+p_{0,2C}\right\} \\ & =p_{0,B}+p_{0,1C}+p_{0,2C}+\frac{1}{1-p_{1,1C}-p_{2,2C}+p_{1,1C}p_{2,2C}-p_{1,2C}p_{2,1C}}\left(\begin{array}{cc} p_{0,1C} & p_{0,2C}\end{array}\right)\left(\begin{array}{cc} 1-p_{2,2C} & -p_{1,2C}\\ -p_{2,1C} & 1-p_{1,1C} \end{array}\right)\left(\begin{array}{c} p_{1,B}\\ p_{2,B} \end{array}\right)-p_{0,1C}-p_{0,2C}\\ & =p_{0,B}+\frac{1}{1-p_{1,1C}-p_{2,2C}+p_{1,1C}p_{2,2C}-p_{1,2C}p_{2,1C}}\left(\begin{array}{cc} p_{0,1C} & p_{0,2C}\end{array}\right)\left(\begin{array}{cc} 1-p_{2,2C} & -p_{1,2C}\\ -p_{2,1C} & 1-p_{1,1C} \end{array}\right)\left(\begin{array}{c} p_{1,B}\\ p_{2,B} \end{array}\right) \end{align*} となる。
従って題意は成り立つ。

ページ情報
タイトル
引き分けがある場合の勝率・敗率
URL
https://www.nomuramath.com/aiihpbiq/
SNSボタン