5次式の因数分解

5次式の因数分解
次の多項式を実数の範囲内で因数分解せよ。
\[ x^{5}+x^{4}+x^{3}+x^{2}+x+1 \]

(0)

\begin{align*} x^{5}+x^{4}+x^{3}+x^{2}+x+1 & =x^{3}\left(x^{2}+x^{1}+1\right)+x^{2}+x+1\\ & =\left(x^{3}+1\right)\left(x^{2}+x+1\right)\\ & =\left(x+1\right)\left(x^{2}-x+1\right)\left(x^{2}+x+1\right) \end{align*}

(0)-2

\begin{align*} x^{5}+x^{4}+x^{3}+x^{2}+x+1 & =\sum_{k=0}^{5}x^{k}\\ & =\frac{1-x^{6}}{1-x}\\ & =\frac{\left(1-x^{3}\right)\left(1+x^{3}\right)}{1-x}\\ & =\frac{\left(1-x\right)\left(1+x+x^{2}\right)\left(1+x\right)\left(1-x+x^{2}\right)}{1-x}\\ & =\left(1+x+x^{2}\right)\left(1+x\right)\left(1-x+x^{2}\right) \end{align*}

(0)-3

\begin{align*} x^{5}+x^{4}+x^{3}+x^{2}+x+1 & =\frac{\left(x-1\right)\left(x^{5}+x^{4}+x^{3}+x^{2}+x+1\right)}{x-1}\\ & =\frac{x^{6}-1}{x-1}\\ & =\frac{\left(x^{3}-1\right)\left(x^{3}+1\right)}{x-1}\\ & =\frac{\left(x-1\right)\left(x^{2}+x+1\right)\left(x+1\right)\left(x^{2}-x+1\right)}{x-1}\\ & =\left(x^{2}+x+1\right)\left(x+1\right)\left(x^{2}-x+1\right) \end{align*}

ページ情報
タイトル
5次式の因数分解
URL
https://www.nomuramath.com/alw57o9h/
SNSボタン