交わりと互いに素の定義
交わりと互いに素の定義
集合\(A,B\)がある。
\(A\cap B\ne\emptyset\)のとき、「\(A\)と\(B\)は交わる」という。
\(A\cap B=\emptyset\)のとき、「\(A\)と\(B\)は交わらない」または「\(A\)と\(B\)は互いに素」という。
集合\(A,B\)がある。
\(A\cap B\ne\emptyset\)のとき、「\(A\)と\(B\)は交わる」という。
\(A\cap B=\emptyset\)のとき、「\(A\)と\(B\)は交わらない」または「\(A\)と\(B\)は互いに素」という。
\(\left\{ a,b\right\} \cap\left\{ a,c\right\} =\left\{ a\right\} \ne\emptyset\)なので\(\left\{ a,b\right\} \)と\(\left\{ a,c\right\} \)は交わる。
\(\left\{ a,b\right\} \cap\left\{ c,d\right\} =\emptyset\)なので\(\left\{ a,b\right\} \)と\(\left\{ c,d\right\} \)は互いに素となる。
\(\left\{ a,b\right\} \cap\left\{ c,d\right\} =\emptyset\)なので\(\left\{ a,b\right\} \)と\(\left\{ c,d\right\} \)は互いに素となる。
ページ情報
タイトル | 交わりと互いに素の定義 |
URL | https://www.nomuramath.com/axa1b1jx/ |
SNSボタン |
内部の最大性と閉包の最小性
\[
O\subseteq A\Leftrightarrow O\subseteq A^{i}
\]
整徐関係と半順序関係
デルタ関数の色々な表現
\[
\delta\left(x\right)=\int_{-\infty}^{\infty}e^{2\pi ikx}dk
\]
ガンマ関数を含む極限
\[
\lim_{n\rightarrow\infty}\sqrt{n}\frac{\Gamma\left(n\right)}{\Gamma\left(n+\frac{1}{2}\right)}=1
\]