ε近傍(開球)の定義
ε近傍(開球)の定義
距離空間\(\left(X,d\right)\)があるとき、\(X\)の元\(a\in X\)と正の実数\(\epsilon>0\)を用いて、\(a\)からの距離が\(\epsilon\)より小さい元全体を\(a\)の\(\epsilon\)近傍や中心\(a\)半径\(\epsilon\)の開球(open
ball)といい、\(U_{\epsilon}\left(a\right)\)や\(U\left(a,\epsilon\right)\)で表したり\(B_{\epsilon}\left(x\right)\)や\(B\left(a,\epsilon\right)\)で表す。
すなわち、
\[ U\left(a,\epsilon\right)=\left\{ x\in X;d\left(a,x\right)<\epsilon\right\} \] である。
距離空間\(\left(X,d\right)\)があるとき、\(X\)の元\(a\in X\)と正の実数\(\epsilon>0\)を用いて、\(a\)からの距離が\(\epsilon\)より小さい元全体を\(a\)の\(\epsilon\)近傍や中心\(a\)半径\(\epsilon\)の開球(open
ball)といい、\(U_{\epsilon}\left(a\right)\)や\(U\left(a,\epsilon\right)\)で表したり\(B_{\epsilon}\left(x\right)\)や\(B\left(a,\epsilon\right)\)で表す。
すなわち、
\[ U\left(a,\epsilon\right)=\left\{ x\in X;d\left(a,x\right)<\epsilon\right\} \] である。
実数全体の集合\(\mathbb{R}\)に通常距離\(d\)を入れた距離空間\(\left(\mathbb{R},d\right)\)で\(a\in\mathbb{R},\epsilon>0\)とすると\(\epsilon\)近傍\(U\left(a,\epsilon\right)\)は開集合\(\left(a-\epsilon,a+\epsilon\right)\)となる。
ページ情報
タイトル | ε近傍(開球)の定義 |
URL | https://www.nomuramath.com/aynu4zz7/ |
SNSボタン |
濃度2以上の密着位相は距離化不可能
$2\leq\left|X\right|$となる密着位相$\left(X,\left\{ \emptyset,X\right\} \right)$は距離化不可能である。
距離空間でε-近傍は開集合
\[
\forall U_{\epsilon}\left(a\right)\subseteq X,\forall a_{0}\in U_{\epsilon}\left(a\right),\exists\epsilon_{0}>0,U_{\epsilon_{0}}\left(a_{0}\right)\subseteq U_{\epsilon}\left(a\right)
\]
距離空間ではコンパクト集合と点列コンパクト集合とは同値
距離空間の有界・直径と全有界の定義
\[
\diam\left(A\right):=\sup\left\{ d\left(a,b\right);a,b\in A\right\}
\]