真分数・仮分数・帯分数の定義
真分数・仮分数・帯分数の定義
掛け算と区別が付かないので普通は使わない。
(1)真分数(しんぶんすう)
分子が分母より小さい分数を真分数という。(2)仮分数(かぶんすう)
分子が分母以上の分数を仮分数という。(3)帯分数(たいぶんすう)
整数と真分数の和で表せれる分数を帯分数という。掛け算と区別が付かないので普通は使わない。
(1)真分数の例
\[ \frac{1}{2},\frac{2}{3},\frac{2}{4} \](2)仮分数の例
\[ \frac{3}{2},\frac{4}{3},\frac{3}{3} \](3) 帯分数の例
\[ 1\frac{3}{5}=1+\frac{3}{5},2\frac{2}{3}=2+\frac{2}{3} \]ページ情報
タイトル | 真分数・仮分数・帯分数の定義 |
URL | https://www.nomuramath.com/b3l6k7wf/ |
SNSボタン |
逆2乗の別表示
\[
\frac{1}{\left(k+1\right)^{2}}=-\int_{0}^{1}x^{k}\log xdx
\]
指数型不等式
\[
\sgn\left(x^{n+1}\right)\sum_{k=0}^{n}\frac{x^{k}}{k!}\leq\sgn\left(x^{n+1}\right)e^{x}
\]
凸関数・狭義凸関数・凹関数・狭義凹関数の基本性質
関数$f$が2回微分可能であるとき、$f''>0$ならば$f$が狭義凸関数となるが、逆は一般的に成り立たない。
巾関数の積分表現
\[
\frac{1}{z^{\alpha}}=\frac{1}{\Gamma\left(\alpha\right)}\int_{0}^{\infty}t^{\alpha-1}e^{-zt}dt
\]