2項変換と交代2項変換の逆変換
(1)2項変換の逆変換
2項変換\[ b_{n}=\sum_{k=0}^{n}C(n,k)a_{k} \] の逆変換は
\begin{align*} a_{n} & =\sum_{k=0}^{n}(-1)^{n-k}C(n,k)b_{k}\\ & =\sum_{k=0}^{n}(-1)^{k}C(n,k)b_{n-k} \end{align*} となる。
(2)交代2項変換の逆変換
交代2項変換\[ b_{n}=\sum_{k=0}^{n}\left(-1\right)^{k}C\left(n,k\right)a_{k} \] の逆変換は
\begin{align*} a_{n} & =\sum_{k=0}^{n}\left(-1\right)^{k}C\left(n,k\right)b_{k} \end{align*} となる。
(1)
\begin{align*} a_{n} & =\sum_{k=0}^{n}\delta_{nk}a_{k}\\ & =\sum_{k=0}^{n}\sum_{j=0}^{n}\left(-1\right)^{j+n}C(n,j)C(j,k)a_{k}\\ & =\sum_{j=0}^{n}\left(-1\right)^{j+n}C(n,j)b_{j}\\ & =\sum_{j=0}^{n}\left(-1\right)^{n-j}C(n,j)b_{j}\qquad\tag{*}\\ & =\sum_{j=0}^{n}\left(-1\right)^{j}C(n,j)b_{n-j} \end{align*}(1)-2
母関数を定義する。\begin{align*} A(x) & =\sum_{k=0}^{\infty}\frac{a_{k}x^{k}}{k!}\\ B(x) & =\sum_{k=0}^{\infty}\frac{b_{k}x^{k}}{k!} \end{align*} これを使うと、
\begin{align*} B(x) & =\sum_{k=0}^{\infty}\frac{x^{k}}{k!}\sum_{j=0}^{k}C(k,j)a_{j}\\ & =\sum_{k=0}^{\infty}\sum_{j=0}^{k}\frac{a_{j}x^{j}}{j!}\frac{x^{k-j}}{(k-j)!}\\ & =\sum_{m=0}^{\infty}\sum_{j=0}^{\infty}\frac{a_{j}x^{j}}{j!}\frac{x^{m}}{m!}\\ & =A(x)e^{x} \end{align*} これより、
\begin{align*} A(x) & =B(x)e^{-x}\\ & =\sum_{k=0}^{\infty}\sum_{j=0}^{\infty}\frac{b_{k}x^{k}}{k!}\frac{(-x)^{j}}{j!}\\ & =\sum_{m=0}^{\infty}\sum_{k=0}^{m}\frac{b_{k}x^{k}}{k!}\frac{(-x)^{m-k}}{(m-k)!}\\ & =\sum_{m=0}^{\infty}\left(\sum_{k=0}^{m}C(m,k)(-1)^{m-k}b_{k}\right)\frac{x^{m}}{m!} \end{align*} となるので、
\begin{align*} a_{m} & =\sum_{k=0}^{m}C(m,k)(-1)^{m-k}b_{k}\\ & =\sum_{k=0}^{m}C(m,k)(-1)^{k}b_{m-k} \end{align*}
(2)
\begin{align*} a_{n} & =\sum_{k=0}^{n}\delta_{nk}a_{k}\\ & =\sum_{k=0}^{n}(-1)^{n+k}\delta_{nk}a_{k}\\ & =\sum_{k=0}^{n}\sum_{j=0}^{n}\left(-1\right)^{n+k}\left(-1\right)^{n+j}C\left(n,j\right)C\left(j,k\right)a_{k}\\ & =\sum_{j=0}^{n}\left(-1\right)^{j}C\left(n,j\right)b_{j} \end{align*}ページ情報
| タイトル | 2項変換と交代2項変換の逆変換 |
| URL | https://www.nomuramath.com/bc4gykjz/ |
| SNSボタン |
2項係数の総和その他
\[
\sum_{k=1}^{n-1}\frac{C\left(k-n,k\right)}{k}=-H_{n-1}
\]
2項係数の関係その他
\[
C\left(\alpha,\beta\right)C\left(\beta,\gamma\right)=C\left(\alpha,\gamma\right)C\left(\alpha-\gamma,\beta-\gamma\right)
\]
一般ヴァンデルモンドの畳み込み定理
\[
\sum_{k_{1}+\cdots+k_{p}=m}\prod_{j=1}^{p}C\left(n_{j},k_{j}\right)=C\left(\sum_{j=1}^{p}n_{j},m\right)
\]
2項係数の第1引数と第2引数同士の総和
\[
\sum_{j=0}^{k-a}\left(-1\right)^{j}C\left(k,j+a\right)C\left(j+b,c\right)=\begin{cases}
\left(-1\right)^{k-a}C\left(b-a,c-k\right) & a-b+c\leq k\\
0 & k<a-b+c
\end{cases}
\]

