パスカルの法則の応用
パスカルの法則の応用
\(n\in\mathbb{N}_{0}\)とする。
\(n\in\mathbb{N}_{0}\)とする。
(1)
\[ C\left(x+n,y+n\right)=C\left(x,y+n\right)+\sum_{k=0}^{n-1}C\left(x+k,y+n-1\right) \](2)
\[ C\left(x+n,y+n\right)=C\left(x,y\right)+\sum_{k=0}^{n-1}C\left(x+k,y+k+1\right) \](3)
\[ C\left(x+n,y+n\right)=\left(-1\right)^{n}\left\{ C\left(x+n,y\right)-\sum_{k=0}^{n-1}\left(-1\right)^{k}C\left(x+n+1,y+1+k\right)\right\} \](1)
\begin{align*} C\left(x+n,y+n\right) & =C\left(x+n-1,y+n\right)+C\left(x+n-1,y+n-1\right)\\ & =C\left(x,y+n\right)+\sum_{k=0}^{n-1}\left\{ C\left(x+n-k,y+n\right)-C\left(x+n-\left(k+1\right),y+n\right)\right\} \\ & =C\left(x,y+n\right)+\sum_{k=0}^{n-1}C\left(x+n-\left(k+1\right),y+n-1\right)\\ & =C\left(x,y+n\right)+\sum_{k=1}^{n}C\left(x+n-k,y+n-1\right)\\ & =C\left(x,y+n\right)+\sum_{k=0}^{n-1}C\left(x+k,y+n-1\right) \end{align*}(2)
\begin{align*} C\left(x+n,y+n\right) & =C\left(x+n-1,y+n\right)+C\left(x+n-1,y+n-1\right)\\ & =C\left(x,y\right)+\sum_{k=0}^{n-1}\left\{ C\left(x+n-k,y+n-k\right)-C\left(x+n-\left(k+1\right),y+n-\left(k+1\right)\right)\right\} \\ & =C\left(x,y\right)+\sum_{k=0}^{n-1}C\left(x+n-\left(k+1\right),y+n-k\right)\\ & =C\left(x,y\right)+\sum_{k=0}^{n-1}C\left(x+k,y+k+1\right) \end{align*}(3)
\begin{align*} C\left(x+n,y+n\right) & =-C\left(x+n,y+n-1\right)+C\left(x+n+1,y+n\right)\\ & =\left(-1\right)^{n}C\left(x+n,y\right)-\sum_{k=0}^{n-1}\left\{ \left(-1\right)^{k+1}C\left(x+n,y+n-k\right)-\left(-1\right)^{k}C\left(x+n,y+n-1-k\right)\right\} \\ & =\left(-1\right)^{n}C\left(x+n,y\right)-\sum_{k=0}^{n-1}\left(-1\right)^{k+1}\left\{ C\left(x+n,y+n-k\right)+C\left(x+n,y+n-1-k\right)\right\} \\ & =\left(-1\right)^{n}C\left(x+n,y\right)-\sum_{k=0}^{n-1}\left(-1\right)^{k+1}\left\{ C\left(x+n+1,y+n-k\right)\right\} \\ & =\left(-1\right)^{n}C\left(x+n,y\right)+\sum_{k=0}^{n-1}\left(-1\right)^{k}C\left(x+n+1,y+n-k\right)\\ & =\left(-1\right)^{n}C\left(x+n,y\right)+\sum_{k=0}^{n-1}\left(-1\right)^{n-1-k}C\left(x+n+1,y+1+k\right)\\ & =\left(-1\right)^{n}\left\{ C\left(x+n,y\right)-\sum_{k=0}^{n-1}\left(-1\right)^{k}C\left(x+n+1,y+1+k\right)\right\} \end{align*}ページ情報
タイトル | パスカルの法則の応用 |
URL | https://www.nomuramath.com/bccs5wcu/ |
SNSボタン |
飛び飛びの2項定理
\[
\sum_{k=0}^{\infty}C\left(n,2k\right)a^{2k}b^{n-2k}=\frac{1}{2}\left\{ \left(a+b\right)^{n}+\left(-a+b\right)^{n}\right\}
\]
2項係数の1項間漸化式
\[
C(x+1,y)=\frac{x+1}{x+1-y}C(x,y)
\]
2項係数の微分
\[
\frac{d}{dx}C(x,y) =C(x,y)\left(\psi(1+x)-\psi(1+x-y)\right)
\]
負の整数の2項係数
\[
C\left(-m,-n\right)=\left(-1\right)^{m-n}C\left(n-1,m-1\right)
\]