分母分子に3角関数を含む定積分
分母分子に3角関数を含む定積分
次の積分を求めよ。
\[ \int_{0}^{\frac{\pi}{2}}\frac{\sqrt[3]{\tan x}}{\left(\sin x+\cos x\right)^{2}}dx=? \]
次の積分を求めよ。
\[ \int_{0}^{\frac{\pi}{2}}\frac{\sqrt[3]{\tan x}}{\left(\sin x+\cos x\right)^{2}}dx=? \]
\begin{align*}
\int_{0}^{\frac{\pi}{2}}\frac{\sqrt[3]{\tan x}}{\left(\sin x+\cos x\right)^{2}}dx & =\int_{0}^{\frac{\pi}{2}}\frac{\sqrt[3]{\tan x}}{\cos^{2}x\left(\tan x+1\right)^{2}}dx\\
& =\int_{0}^{\frac{\pi}{2}}\frac{\sqrt[3]{\tan x}}{\cos^{2}x\left(\tan x+1\right)^{2}}dx\\
& =\int_{0}^{\infty}\frac{\sqrt[3]{\tan x}}{\left(\tan x+1\right)^{2}}d\tan x\\
& =B\left(1+\frac{1}{3},2-\frac{1}{3}-1\right)\\
& =B\left(\frac{4}{3},\frac{2}{3}\right)\\
& =\frac{\Gamma\left(\frac{4}{3}\right)\Gamma\left(\frac{2}{3}\right)}{\Gamma\left(\frac{4}{3}+\frac{2}{3}\right)}\\
& =\frac{\Gamma\left(\frac{4}{3}\right)\Gamma\left(\frac{2}{3}\right)}{\Gamma\left(2\right)}\\
& =\frac{1}{3}\Gamma\left(\frac{1}{3}\right)\Gamma\left(1-\frac{1}{3}\right)\\
& =\frac{1}{3}\frac{\pi}{\sin\left(\frac{1}{3}\pi\right)}\\
& =\frac{2}{3\sqrt{3}}\pi\\
& =\frac{2\sqrt{3}}{9}\pi
\end{align*}
ページ情報
タイトル | 分母分子に3角関数を含む定積分 |
URL | https://www.nomuramath.com/bezq90d2/ |
SNSボタン |
分母に(1+x²)²を含む積分
\[
\int\frac{1}{\left(1+x^{2}\right)^{2}}dx=\frac{1}{2}\tan^{\bullet}x+\frac{x}{2\left(1+x^{2}\right)}+C
\]
対数同士の積の積分
\[
\int_{0}^{1}\log\left(x\right)\log\left(1+x\right)dx=?
\]
分子が対数で分母が多項式の定積分
\[
\int_{0}^{\infty}\frac{\log x}{x^{n}+1}dx=?
\]
tanの平方根の積分
\[
\int\sqrt{\tan x}dx=\frac{\sqrt{2}}{4}\log\left(\tan x-\sqrt{2\tan x}+1\right)-\frac{\sqrt{2}}{4}\log\left(\tan x+\sqrt{2\tan x}+1\right)+\frac{\sqrt{2}}{2}\tan^{\bullet}\left(\sqrt{2\tan x}-1\right)+\frac{\sqrt{2}}{2}\tan^{\bullet}\left(\sqrt{2\tan x}+1\right)+C
\]