(*)log(1-x)のn乗の展開
\(n\in\mathbb{N}_{0}\)とする。
\[ \log^{n}(1-x)=(-1)^{n}n!\sum_{k=0}^{\infty}\frac{S_{1}(k+n,n)}{(k+n)!}x^{k+n} \] ここで\(S_{1}\)は第1種スターリング数である。
\[ \log^{n}(1-x)=(-1)^{n}n!\sum_{k=0}^{\infty}\frac{S_{1}(k+n,n)}{(k+n)!}x^{k+n} \] ここで\(S_{1}\)は第1種スターリング数である。
略
ページ情報
タイトル | (*)log(1-x)のn乗の展開 |
URL | https://www.nomuramath.com/bfzjrvry/ |
SNSボタン |
二項係数とベータ関数を含む極限
\[
\lim_{n\rightarrow\infty}\sqrt{n}4^{n}B(n,n)=2\sqrt{\pi}
\]
対数の指数
\[
a^{\log_{b}c}=c^{\log_{b}a}
\]
logの2乗の級数表示
\[
\log^{2}(1-x)=2\sum_{k=1}^{\infty}\frac{H_{k}}{k+1}x^{k+1}
\]
関数の極限
\[
\forall\epsilon>0,\exists\delta>0;\forall x\in\mathbb{R},0<\left|x-a\right|<\delta\Rightarrow\left|f\left(x\right)-b\right||<\epsilon
\]