(*)log(1-x)のn乗の展開
\(n\in\mathbb{N}_{0}\)とする。
\[ \log^{n}(1-x)=(-1)^{n}n!\sum_{k=0}^{\infty}\frac{S_{1}(k+n,n)}{(k+n)!}x^{k+n} \] ここで\(S_{1}\)は第1種スターリング数である。
\[ \log^{n}(1-x)=(-1)^{n}n!\sum_{k=0}^{\infty}\frac{S_{1}(k+n,n)}{(k+n)!}x^{k+n} \] ここで\(S_{1}\)は第1種スターリング数である。
略
ページ情報
タイトル | (*)log(1-x)のn乗の展開 |
URL | https://www.nomuramath.com/bfzjrvry/ |
SNSボタン |
数列の極限
対数の基本公式
\[
\log M+\log N=\log MN
\]
対数の公式
\[
\log M-\log N=\log\frac{M}{N}
\]
ウォリス積分の定義
\[
\int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta
\]