チェビシェフの微分方程式
チェビシェフの微分方程式
(1)
\[ \left(1-x^{2}\right)T_{n}''(x)-xT_{n}'(x)+n^{2}T_{n}(x)=0 \](2)
\[ \left(1-x^{2}\right)U_{n}''(x)-3xU_{n}'(x)+n(n+2)U_{n}(x)=0 \](1)
\begin{align*} \left(1-x^{2}\right)T_{n}''(x)-xT_{n}'(x)+n^{2}T_{n} & =\left(1-x^{2}\right)\left(T_{n}''(x)+\frac{-x}{1-x^{2}}T_{n}'(x)+\frac{n^{2}}{1-x^{2}}T_{n}(x)\right)\\ & =\left(1-x^{2}\right)\left(\exp\left(-\int^{x}\frac{-t}{1-t^{2}}dt\right)\frac{d}{dx}\left\{ \exp\left(\int^{x}\frac{-t}{1-t^{2}}dt\right)T_{n}'(x)\right\} +\frac{n^{2}}{1-x^{2}}T_{n}(x)\right)\\ & =\left(1-x^{2}\right)\left(\exp\left(-\frac{1}{2}\log(1-x^{2})\right)\frac{d}{dx}\left\{ \exp\left(\frac{1}{2}\log(1-x^{2})\right)T_{n}'(x)\right\} +\frac{n^{2}}{1-x^{2}}T_{n}(x)\right)\\ & =\left(1-x^{2}\right)\left(\frac{1}{\sqrt{1-x^{2}}}\frac{d}{dx}\left\{ \sqrt{1-x^{2}}T_{n}'(x)\right\} +\frac{n^{2}}{1-x^{2}}T_{n}(x)\right)\\ & =\left(1-x^{2}\right)\left(\frac{1}{\sqrt{1-x^{2}}}\frac{d}{dx}\left\{ \sqrt{1-x^{2}}\frac{d}{dx}\cos\left(n\cos^{\bullet}x\right)\right\} +\frac{n^{2}}{1-x^{2}}T_{n}(x)\right)\\ & =\left(1-x^{2}\right)\left(\frac{1}{\sqrt{1-x^{2}}}\frac{d}{dx}\left\{ \sqrt{1-x^{2}}\sin\left(n\cos^{\bullet}x\right)\frac{n}{\sqrt{1-x^{2}}}\right\} +\frac{n^{2}}{1-x^{2}}T_{n}(x)\right)\\ & =\left(1-x^{2}\right)\left(\frac{n}{\sqrt{1-x^{2}}}\frac{d}{dx}\sin\left(n\cos^{\bullet}x\right)+\frac{n^{2}}{1-x^{2}}T_{n}(x)\right)\\ & =\left(1-x^{2}\right)\left(\frac{n}{\sqrt{1-x^{2}}}\cos\left(n\cos^{\bullet}x\right)\frac{-n}{\sqrt{1-x^{2}}}+\frac{n^{2}}{1-x^{2}}T_{n}(x)\right)\\ & =\left(1-x^{2}\right)\left(-\frac{n^{2}}{1-x^{2}}T_{n}(x)+\frac{n^{2}}{1-x^{2}}T_{n}(x)\right)\\ & =0 \end{align*}(2)
\begin{align*} \left(1-x^{2}\right)U_{n}''(x)-3xU_{n}'(x)+n(n+2)U_{n}(x) & =\frac{1}{n+1}\left\{ \left(1-x^{2}\right)T_{n+1}'''(x)-3xT_{n+1}''(x)+n(n+2)T_{n+1}'(x)\right\} \qquad,\qquad nU_{n-1}(x)=T_{n}'(x)\\ & =\frac{1}{n+1}\left\{ \frac{d}{dx}\left(\left(1-x^{2}\right)T_{n+1}''(x)\right)+2xT_{n+1}''(x)-3xT_{n+1}''(x)+n(n+2)T_{n+1}'(x)\right\} \\ & =\frac{1}{n+1}\left\{ \frac{d}{dx}\left(\left(1-x^{2}\right)T_{n+1}''(x)\right)-\frac{d}{dx}\left(xT_{n+1}'(x)\right)+T_{n+1}'(x)+n(n+2)T_{n+1}'(x)\right\} \\ & =\frac{1}{n+1}\left\{ \frac{d}{dx}\left(\left(1-x^{2}\right)T_{n+1}''(x)\right)-\frac{d}{dx}\left(xT_{n+1}'(x)\right)+(n+1)^{2}\frac{d}{dx}T_{n+1}(x)\right\} \\ & =\frac{1}{n+1}\frac{d}{dx}\left\{ \left(1-x^{2}\right)T_{n+1}''(x)-xT_{n+1}'(x)+(n+1)^{2}T_{n+1}(x)\right\} \\ & =0 \end{align*}ページ情報
タイトル | チェビシェフの微分方程式 |
URL | https://www.nomuramath.com/br9x8q6f/ |
SNSボタン |
チェビシェフ多項式の昇降演算子
\[
\left(\left(1-x^{2}\right)\frac{d}{dx}\mp nx\right)T_{n}(x)=\mp nT_{n\pm1}(x)
\]
(*)チェビシェフ多項式のロドリゲス公式
\[
T_{n}(x)=\frac{(-1)^{n}\sqrt{\pi}\sqrt{1-x^{2}}}{2^{n}\Gamma\left(n+\frac{1}{2}\right)}\frac{d^{n}}{dx^{n}}\left(1-x^{2}\right)^{n-\frac{1}{2}}
\]
第3種・第4種チェビシェフ多項式の直交性
\[
\int_{-1}^{1}V_{m}(x)V_{n}(x)\sqrt{\frac{1+x}{1-x}}dx=\pi\delta_{mn}
\]
第1種チェビシェフ多項式と第2種チェビシェフ多項式の関係
\[
nU_{n-1}(x)=T_{n}'(x)
\]