階乗と冪乗の極限
階乗と冪乗の極限
\[ \lim_{n\rightarrow\infty}\frac{x^{n}}{n!}=0 \]
\[ \lim_{n\rightarrow\infty}\frac{x^{n}}{n!}=0 \]
\begin{align*}
\lim_{n\rightarrow\infty}\frac{x^{n}}{n!} & =\lim_{n\rightarrow\infty}\prod_{k=1}^{n}\frac{x}{k}\\
& =0
\end{align*}
ページ情報
| タイトル | 階乗と冪乗の極限 |
| URL | https://www.nomuramath.com/bs5ajhr9/ |
| SNSボタン |
数列の極限での大小関係
\[
a_{n}<b_{n}\Rightarrow a\leq b
\]
合成関数の導関数・偏導関数
\[
\frac{df}{dt}=\sum_{k=1}^{n}\frac{\partial f}{\partial x_{k}}\frac{dx_{k}}{dt}
\]
偏微分の順序交換(シュワルツの定理)
\[
\frac{\partial^{2}f\left(x,y\right)}{\partial x\partial y}=\frac{\partial^{2}f\left(x,y\right)}{\partial y\partial x}
\]
C1級・全微分可能・偏微分可能・連続の関係
\[
C^{1}\text{級}\Rightarrow\text{全微分可能}\Rightarrow\text{偏微分可能}
\]

