一様連続であれば各点連続

一様連続であれば各点連続
距離空間\(\left(X,d_{X}\right),\left(Y,d_{Y}\right)\)と写像\(f:X\rightarrow Y\)があるとする。
このとき、\(f\)が一様連続であれば各点連続である。
逆は一般的に成り立たない。
一様連続の定義は、
\[ \forall\epsilon>0,\exists\delta>0,\forall x_{1},x_{2}\in X;d_{X}\left(x_{1},x_{2}\right)<\delta\rightarrow d_{Y}\left(f\left(x_{1}\right),f\left(x_{2}\right)\right)<\epsilon \] であり、各点連続の定義は、
\[ \forall x_{1}\in X,\forall\epsilon>0,\exists\delta>0,\forall x_{2}\in X;d_{X}\left(x_{1},x_{2}\right)<\delta\rightarrow d_{Y}\left(f\left(x_{1}\right),f\left(x_{2}\right)\right)<\epsilon \] である。
全称記号と存在記号は順番により、
\[ \exists a,\forall b,P\left(a,b\right)\Rightarrow\forall b,\exists a,P\left(a,b\right) \] となるが、逆は一般的に成り立たない。
これより、一様連続であれば各点連続であるが、逆は一般的に成り立たない。

ページ情報
タイトル
一様連続であれば各点連続
URL
https://www.nomuramath.com/bwn8rqfu/
SNSボタン