一様連続であれば各点連続
一様連続であれば各点連続
距離空間\(\left(X,d_{X}\right),\left(Y,d_{Y}\right)\)と写像\(f:X\rightarrow Y\)があるとする。
このとき、\(f\)が一様連続であれば各点連続である。
逆は一般的に成り立たない。
距離空間\(\left(X,d_{X}\right),\left(Y,d_{Y}\right)\)と写像\(f:X\rightarrow Y\)があるとする。
このとき、\(f\)が一様連続であれば各点連続である。
逆は一般的に成り立たない。
一様連続の定義は、
\[ \forall\epsilon>0,\exists\delta>0,\forall x_{1},x_{2}\in X;d_{X}\left(x_{1},x_{2}\right)<\delta\rightarrow d_{Y}\left(f\left(x_{1}\right),f\left(x_{2}\right)\right)<\epsilon \] であり、各点連続の定義は、
\[ \forall x_{1}\in X,\forall\epsilon>0,\exists\delta>0,\forall x_{2}\in X;d_{X}\left(x_{1},x_{2}\right)<\delta\rightarrow d_{Y}\left(f\left(x_{1}\right),f\left(x_{2}\right)\right)<\epsilon \] である。
全称記号と存在記号は順番により、
\[ \exists a,\forall b,P\left(a,b\right)\Rightarrow\forall b,\exists a,P\left(a,b\right) \] となるが、逆は一般的に成り立たない。
これより、一様連続であれば各点連続であるが、逆は一般的に成り立たない。
\[ \forall\epsilon>0,\exists\delta>0,\forall x_{1},x_{2}\in X;d_{X}\left(x_{1},x_{2}\right)<\delta\rightarrow d_{Y}\left(f\left(x_{1}\right),f\left(x_{2}\right)\right)<\epsilon \] であり、各点連続の定義は、
\[ \forall x_{1}\in X,\forall\epsilon>0,\exists\delta>0,\forall x_{2}\in X;d_{X}\left(x_{1},x_{2}\right)<\delta\rightarrow d_{Y}\left(f\left(x_{1}\right),f\left(x_{2}\right)\right)<\epsilon \] である。
全称記号と存在記号は順番により、
\[ \exists a,\forall b,P\left(a,b\right)\Rightarrow\forall b,\exists a,P\left(a,b\right) \] となるが、逆は一般的に成り立たない。
これより、一様連続であれば各点連続であるが、逆は一般的に成り立たない。
ページ情報
タイトル | 一様連続であれば各点連続 |
URL | https://www.nomuramath.com/bwn8rqfu/ |
SNSボタン |
2つの距離関数と点列・開集合・閉集合の関係
部分距離空間・直積距離空間の定義
\[
d\left(P,Q\right)^{2}:=\sum_{k=1}^{n}d_{k}\left(p_{k},q_{k}\right)^{2}
\]
距離空間では点列の収束先は一意的
点列の収束と任意の部分列の収束
点列の収束と任意の部分列の収束