巾関数と逆三角関数・逆双曲線関数の積の積分

巾関数と逆三角関数の積の積分

(1)

zαSinzdz=1α+1(zα+1Sinzzα+2α+2F(12,α2+1;α2+2;z2))+C

(2)

zαCoszdz=1α+1(zα+1Cosz+zα+2α+2F(12,α2+1;α2+2;z2))+C

(3)

zαTanzdz=1α+1(zα+1Tanzzα+2α+2F(1,α2+1;α2+2;z2))+C

-

Fは一般化超幾何関数

(1)

zαSinzdz=1α+1zα+1Sinz1α+1zα+111z2dz=1α+1zα+1Sinz1α+1zα+1F(12;;z2)dz=1α+1zα+1Sinz1α+1zα+2α+2F(12,α+22;α+22+1;z2)+C=1α+1(zα+1Sinzzα+2α+2F(12,α2+1;α2+2;z2))+C

(2)

zαCoszdz=1α+1zα+1Cosz+1α+1zα+111z2dz=1α+1zα+1Cosz+1α+1zα+1F(12;;z2)dz=1α+1zα+1Cosz+1α+1zα+2α+2F(12,α+22;α+22+1;z2)+C=1α+1(zα+1Cosz+zα+2α+2F(12,α2+1;α2+2;z2))+C

(3)

zαTanzdz=zα+1α+1Tanz1α+1zα+11+z2dz=zα+1α+1Tanz1α+1zα+1F(1;;z2)dz=zα+1α+1Tanz1α+1zα+2α+2F(1,α+22;α+22+1;z2)+C=1α+1(zα+1Tanzzα+2α+2F(1,α2+1;α2+2;z2))+C
巾関数と逆双曲線関数の積の積分

(1)

zαSinhzdz=1α+1(zα+1Sinhzzα+2α+2F(12,α2+1;α2+2;z2))+C

(2)

zαCoshzdz=1α+1(zα+1Coshz1z2z1z+1zα+2α+2F(12,α2+1;α2+2;z2))+C

(3)

zαTanhzdz=1α+1(zα+1Tanhzzα+2α+2F(1,α2+1;α2+2;z2))+C

-

Fは一般化超幾何関数

(1)

zαSinhzdz=1α+1zα+1Sinhz1α+1zα+111+z2dz=1α+1zα+1Sinhz1α+1zα+1F(12;;z2)dz=1α+1zα+1Sinhz1α+1zα+2α+2F(12,α+22;α+22+1;z2)+C=1α+1(zα+1Sinhzzα+2α+2F(12,α2+1;α2+2;z2))+C

(2)

zαCoshzdz=1α+1zα+1Coshz1α+1zα+11z1z+1dz=1α+1zα+1Coshz1α+11z2z1z+1zα+111z2dz=1α+1zα+1Coshz1α+11z2z1z+1zα+1F(12;;z2)dz=1α+1zα+1Coshz1α+11z2z1z+1zα+2α+2F(12,α+22;α+22+1;z2)+C=1α+1(zα+1Coshz1z2z1z+1zα+2α+2F(12,α2+1;α2+2;z2))+C

(3)

zαTanhzdz=zα+1α+1Tanhz1α+1zα+11z2dz=zα+1α+1Tanhz1α+1zα+1F(1;;z2)dz=zα+1α+1Tanhz1α+1zα+2α+2F(1,α+22;α+22+1;z2)+C=1α+1(zα+1Tanhzzα+2α+2F(1,α2+1;α2+2;z2))+C
数学言語
在宅ワーカー募集中
スポンサー募集!

ページ情報
タイトル
巾関数と逆三角関数・逆双曲線関数の積の積分
URL
https://www.nomuramath.com/c4qt8mvx/
SNSボタン