\[
\sum_{k=0}^{n}\frac{1}{\left(ak+b\right)!_{a}}=\frac{e^{\frac{1}{a}}a^{\frac{b}{a}}\Gamma\left(\frac{b}{a}+1\right)}{b!_{a}}\left(\frac{\Gamma\left(n+\frac{b}{a}+1,\frac{1}{a}\right)}{\Gamma\left(n+\frac{b}{a}+1\right)}-\frac{\Gamma\left(\frac{b}{a},\frac{1}{a}\right)}{\Gamma\left(\frac{b}{a}\right)}\right)
\]