多重階乗 2021年2月5日 ウォリス積分の拡張2重階乗表示 \[ \int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta=\frac{\left(n-1\right)!^{2}}{\left(n\right)!^{2}}\sqrt{\frac{\pi}{2}} \]
ガンマ関数 2021年2月3日 1次式の総乗と階乗 \[ \prod_{k=a}^{b}\left(kn+r\right)=n^{b-a+1}\frac{\left(b+\frac{r}{n}\right)!}{\Gamma\left(a+\frac{r}{n}\right)} \]
多重階乗 2021年1月28日 多重階乗の階乗表示 \[ \left(qn+r\right)!_{n}=r!_{n}n^{q}\frac{\left(q+\frac{r}{n}\right)!}{\left(\frac{r}{n}\right)!} \]
多重階乗 2021年1月23日 負の多重階乗 \[ \left(-\left(qn+r\right)\right)!_{n}=\frac{\left(-1\right)^{q}}{\left(qn-\left(n-r\right)\right)!_{n}} \]
多重階乗 2021年1月11日 多重階乗と拡張多重階乗の定義 \[ \left(x\right)!^{n}=n^{\frac{x-1}{n}}\frac{\left(\frac{x}{n}\right)!}{\left(\frac{1}{n}\right)!} \]
三角関数 2020年12月21日 三角関数と双曲線関数の積分 \[ \int f(\cos x,\sin x)dx=\int f\left(\frac{1-t^{2}}{1+t^{2}},\frac{2t}{1+t^{2}}\right)\frac{2}{1+t^{2}}dt\cnd{t=\tan\frac{x}{2}} \]
三角関数 2020年12月9日 三角関数(双曲線関数)の対数とリーマン・ゼータ関数 \[ \log\left(\sin\left(\pi x\right)\right)=\log\left(\pi x\right)-\sum_{k=1}^{\infty}\frac{\zeta\left(2k\right)}{k}x^{2k} \]
ガンマ関数 2020年12月7日 ガンマ関数の対数とリーマン・ゼータ関数 \[ \log\Gamma\left(x+1\right)=-\gamma x+\sum_{k=2}^{\infty}\frac{(-1)^{k}\zeta\left(k\right)}{k}x^{k} \]
ゼータ関数 2020年12月5日 ゼータ関数の交代級数 \[ \sum_{k=1}^{\infty}\left(\zeta\left(2k\right)-\zeta\left(2k+1\right)\right)=\frac{1}{2} \]
ゼータ関数 2020年11月29日 ζ(4k)の総和 \[ \sum_{k=1}^{\infty}\left(\zeta(4k)-1\right)=\frac{7}{8}-\frac{\pi}{4}\tanh^{-1}\pi \]
ゼータ関数 2020年11月26日 偶数ゼータの通常型母関数 \[ \sum_{k=1}^{\infty}\zeta(2k)x^{2k}=\frac{1}{2}\left(1-\pi x\tan^{-1}\left(\pi x\right)\right) \]
チェビシェフ多項式 2020年11月13日 チェビシェフ多項式の級数表示 \[ T_{n}(x)=\sum_{k=0}^{\left\lfloor \frac{n}{2}\right\rfloor }\left(C(n,2k)\left(-1\right)^{k}\left(1-x^{2}\right)^{k}x^{n-2k}\right) \]
チェビシェフ多項式 2020年11月12日 チェビシェフ多項式の別表記 \[ T_{n}(x)=\frac{1}{2}\left(\left(x+i\sqrt{1-x^{2}}\right)^{n}+\left(x-i\sqrt{1-x^{2}}\right)^{n}\right) \]
チェビシェフ多項式 2020年10月25日 (*)チェビシェフ多項式のロドリゲス公式 \[ T_{n}(x)=\frac{(-1)^{n}\sqrt{\pi}\sqrt{1-x^{2}}}{2^{n}\Gamma\left(n+\frac{1}{2}\right)}\frac{d^{n}}{dx^{n}}\left(1-x^{2}\right)^{n-\frac{1}{2}} \]
チェビシェフ多項式 2020年10月24日 第3種・第4種チェビシェフ多項式の微分方程式 \[ \left(1-x^{2}\right)V_{n}''(x)-\left(2x-1\right)V_{n}'(x)+n(n+1)V_{n}(x)=0 \]
チェビシェフ多項式 2020年10月23日 第3種・第4種チェビシェフ多項式の直交性 \[ \int_{-1}^{1}V_{m}(x)V_{n}(x)\sqrt{\frac{1+x}{1-x}}dx=\pi\delta_{mn} \]
チェビシェフ多項式 2020年10月20日 第3種・第4種チェビシェフ多項式の定義 \[ V_{n}(x)=\frac{\cos\left(\left(n+\frac{1}{2}\right)\cos^{\bullet}x\right)}{\cos\left(\frac{1}{2}\cos^{\bullet}x\right)} \]