多重階乗 2021年3月7日 2重階乗の逆数和 \[ \sum_{k=0}^{n}\frac{1}{\left(2k\right)!!}=\sqrt{e}\frac{\Gamma\left(n+1,\frac{1}{2}\right)}{\Gamma\left(n+1\right)} \]
ガンマ関数 2021年3月4日 第2種不完全ガンマ関数とガンマ関数の比の極限 \[ \lim_{k\rightarrow0}\frac{\Gamma\left(k,x\right)}{\Gamma\left(k\right)}=\delta_{0x} \]
ガンマ関数 2021年2月27日 第1種・第2種不完全ガンマ関数の微分 \[ \frac{\partial\Gamma\left(a,x\right)}{\partial x}=-x^{a-1}e^{-x} \]
ガンマ関数 2021年2月22日 第1種・第2種不完全ガンマ関数の漸化式 \[ \Gamma\left(a+1,x\right)=a\Gamma\left(a,x\right)+x^{a}e^{-x} \]
ガンマ関数 2021年2月19日 不完全ガンマ関数とガンマ関数との関係 \[ \gamma\left(a,x\right)+\Gamma\left(a,x\right)=\Gamma\left(a\right) \]
ガンマ関数 2021年2月11日 階乗と階乗の逆数の母関数 \[ \frac{x^{a}}{a!}=e^{x}\left(\frac{\Gamma\left(a+1,x\right)}{\Gamma\left(a+1\right)}-\frac{\Gamma\left(a,x\right)}{\Gamma\left(a\right)}\right) \]
多重階乗 2021年2月5日 ウォリス積分の拡張2重階乗表示 \[ \int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta=\frac{\left(n-1\right)!^{2}}{\left(n\right)!^{2}}\sqrt{\frac{\pi}{2}} \]
ガンマ関数 2021年2月3日 1次式の総乗と階乗 \[ \prod_{k=a}^{b}\left(kn+r\right)=n^{b-a+1}\frac{\left(b+\frac{r}{n}\right)!}{\Gamma\left(a+\frac{r}{n}\right)} \]
多重階乗 2021年1月28日 多重階乗の階乗表示 \[ \left(qn+r\right)!_{n}=r!_{n}n^{q}\frac{\left(q+\frac{r}{n}\right)!}{\left(\frac{r}{n}\right)!} \]
多重階乗 2021年1月23日 負の多重階乗 \[ \left(-\left(qn+r\right)\right)!_{n}=\frac{\left(-1\right)^{q}}{\left(qn-\left(n-r\right)\right)!_{n}} \]
多重階乗 2021年1月11日 多重階乗と拡張多重階乗の定義 \[ \left(x\right)!^{n}=n^{\frac{x-1}{n}}\frac{\left(\frac{x}{n}\right)!}{\left(\frac{1}{n}\right)!} \]
3角関数 2020年12月21日 三角関数と双曲線関数の積分 \[ \int f(\cos x,\sin x)dx=\int f\left(\frac{1-t^{2}}{1+t^{2}},\frac{2t}{1+t^{2}}\right)\frac{2}{1+t^{2}}dt\cmt{t=\tan\frac{x}{2}} \]
3角関数 2020年12月9日 三角関数(双曲線関数)の対数とリーマン・ゼータ関数 \[ \log\left(\sin\left(\pi x\right)\right)=\log\left(\pi x\right)-\sum_{k=1}^{\infty}\frac{\zeta\left(2k\right)}{k}x^{2k} \]
ガンマ関数 2020年12月7日 ガンマ関数の対数とリーマン・ゼータ関数 \[ \log\Gamma\left(x+1\right)=-\gamma x+\sum_{k=2}^{\infty}\frac{(-1)^{k}\zeta\left(k\right)}{k}x^{k} \]
ゼータ関数 2020年12月5日 ゼータ関数の交代級数 \[ \sum_{k=1}^{\infty}\left(\zeta\left(2k\right)-\zeta\left(2k+1\right)\right)=\frac{1}{2} \]
ゼータ関数 2020年11月29日 ζ(4k)の総和 \[ \sum_{k=1}^{\infty}\left(\zeta(4k)-1\right)=\frac{7}{8}-\frac{\pi}{4}\tanh^{-1}\pi \]
ゼータ関数 2020年11月26日 偶数ゼータの通常型母関数 \[ \sum_{k=1}^{\infty}\zeta(2k)x^{2k}=\frac{1}{2}\left(1-\pi x\tan^{-1}\left(\pi x\right)\right) \]
チェビシェフ多項式 2020年11月13日 チェビシェフ多項式の級数表示 \[ T_{n}(x)=\sum_{k=0}^{\left\lfloor \frac{n}{2}\right\rfloor }\left(C(n,2k)\left(-1\right)^{k}\left(1-x^{2}\right)^{k}x^{n-2k}\right) \]
チェビシェフ多項式 2020年11月12日 チェビシェフ多項式の別表記 \[ T_{n}(x)=\frac{1}{2}\left(\left(x+i\sqrt{1-x^{2}}\right)^{n}+\left(x-i\sqrt{1-x^{2}}\right)^{n}\right) \]