カテゴリー: 数学

3点を通る円

\[ x^{2}+y^{2}-\frac{1}{x_{1}y_{2}+y_{1}x_{3}+x_{2}y_{3}-x_{1}y_{3}-y_{1}x_{2}-y_{2}x_{3}}\left(\begin{array}{ccc} x & y & 1\end{array}\right)\left(\begin{array}{ccc} y_{2}-y_{3} & y_{3}-y_{1} & y_{1}-y_{2}\\ x_{3}-x_{2} & x_{1}-x_{3} & x_{2}-x_{1}\\ x_{2}y_{3}-y_{2}x_{3} & y_{1}x_{3}-x_{1}y_{3} & x_{1}y_{2}-y_{1}x_{2} \end{array}\right)\left(\begin{array}{c} x_{1}^{\;2}+y_{1}^{\;2}\\ x_{2}^{\;2}+y_{2}^{\;2}\\ x_{3}^{\;2}+y_{3}^{\;2} \end{array}\right)=0 \]

条件収束と絶対収束の定義

数列$\left\{ a_{n}\right\} $の各項$a_{n}$の絶対値をとった総和が$\sum_{k=1}^{\infty}\left|a_{n}\right|<\infty$となるとき、$\sum_{k=1}^{\infty}a_{n}$は絶対収束するという。

3角不等式

\[ \left|x\right|-\left|y\right|\leq\left|x+y\right|\leq\left|x\right|+\left|y\right| \]