ベータ関数 2022年4月12日 ベータ関数の絶対収束条件 ベータ関数$B\left(p,q\right)$は$\Re\left(p\right)>0\;\land\;\Re\left(q\right)>0$で絶対収束
整式 2022年3月18日 n乗同士の和と差の因数分解 \[ a^{2n+1}\pm b^{2n+1}=\left(a\pm b\right)\left(\sum_{k=0}^{2n}\left(\mp1\right)^{k}a^{2n-k}b^{k}\right) \]
整式 2022年3月10日 ソフィー・ジェルマンの恒等式 \[ a^{4}+4b^{4}=\left(a^{2}+2ab+2b^{2}\right)\left(a^{2}-2ab+2b^{2}\right) \]
整式 2022年3月6日 オイラーの4平方恒等式 \[ \left(a_{0}^{\;2}+a_{1}^{\;2}+a_{2}^{\;2}+a_{3}^{\;2}\right)\left(b_{0}^{\;2}+b_{1}^{\;2}+b_{2}^{\;2}+b_{3}^{\;2}\right)=\left(a_{0}b_{0}-a_{1}b_{1}-a_{2}b_{2}-a_{3}b_{3}\right)^{2}+\left(a_{0}b_{1}+a_{1}b_{0}+a_{2}b_{3}-a_{3}b_{2}\right)^{2}+\left(a_{0}b_{2}-a_{1}b_{3}+a_{2}b_{0}+a_{3}b_{1}\right)^{2}+\left(a_{0}b_{3}+a_{1}b_{2}-a_{2}b_{1}+a_{3}b_{0}\right)^{2} \]
整式 2022年2月28日 ブラーマグプタ2平方恒等式 \[ \left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=\left(ac\pm bd\right)^{2}+\left(ad\mp bc\right)^{2} \]
整式 2022年2月24日 ビネ・コーシーとラグランジュの恒等式 \[ \left(\sum_{i=1}^{n}a_{i}c_{i}\right)\left(\sum_{j=1}^{n}b_{j}d_{j}\right)-\left(\sum_{i=1}^{n}a_{i}d_{i}\right)\left(\sum_{j=1}^{n}b_{j}c_{j}\right)=\sum_{1\leq i<j\leq n}\left(a_{i}b_{j}-a_{j}b_{i}\right)\left(c_{i}d_{j}-c_{j}d_{i}\right) \]
整式 2022年2月16日 差積の定義と性質 \[ \Delta\left(x_{1},\cdots,x_{n}\right):=\prod_{1\leq i<j\leq n}\left(x_{i}-x_{j}\right) \]
整式 2022年2月12日 複二次式の定義と因数分解 \[ a_{4}x^{4}+a_{2}x^{2}+a_{0}=\frac{1}{4a_{4}}\left(2a_{4}x^{2}+a_{2}+\sqrt{a_{2}^{\;2}-4a_{4}a_{0}}\right)\left(2a_{4}x^{2}+a_{2}-\sqrt{a_{2}^{\;2}-4a_{4}a_{0}}\right) \]
整式 2022年2月6日 4次方程式標準形の解き方 \[ y=\frac{\mp_{1}\sqrt{2u-p}\pm_{2}\sqrt{-p-2u-\frac{4q}{2\sqrt{2u-p}}}}{2} \]
整式 2022年1月31日 因数分解による3次方程式の標準形の解 \[ x_{k}=\omega^{k}\sqrt[3]{-\frac{q}{2}+\sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}}-\omega^{3-k}\frac{p}{3}\frac{1}{\sqrt[3]{-\frac{q}{2}-\sqrt{\left(\frac{q}{2}\right)^{2}+\left(\frac{p}{3}\right)^{3}}}}\cnd{k\in\left\{ 0,1,2\right\} } \]
数論 2022年1月20日 n番目の素数の式 \[ P\left(n\right)=1+\sum_{k=1}^{2^{n}}\left\lfloor \sqrt[n]{\frac{n}{\sum_{j=1}^{k}\left\lfloor \cos^{2}\left(\frac{\left(j-1\right)!+1}{j}\pi\right)\right\rfloor }}\right\rfloor \]
解析学 2022年1月17日 ラクランジュの未定乗数法 \[ F\left(x_{1},\cdots,x_{n},\lambda_{1,}\cdots,\lambda_{m}\right)=f\left(x_{1},\cdots,x_{n}\right)-\sum_{k=1}^{m}\lambda_{k}g_{k}\left(x_{1},\cdots,x_{n}\right) \]