カテゴリー: 数学

複二次式の定義と因数分解

\[ a_{4}x^{4}+a_{2}x^{2}+a_{0}=\frac{1}{4a_{4}}\left(2a_{4}x^{2}+a_{2}+\sqrt{a_{2}^{\;2}-4a_{4}a_{0}}\right)\left(2a_{4}x^{2}+a_{2}-\sqrt{a_{2}^{\;2}-4a_{4}a_{0}}\right) \]

n番目の素数の式

\[ P\left(n\right)=1+\sum_{k=1}^{2^{n}}\left\lfloor \sqrt[n]{\frac{n}{\sum_{j=1}^{k}\left\lfloor \cos^{2}\left(\frac{\left(j-1\right)!+1}{j}\pi\right)\right\rfloor }}\right\rfloor \]

ラクランジュの未定乗数法

\[ F\left(x_{1},\cdots,x_{n},\lambda_{1,}\cdots,\lambda_{m}\right)=f\left(x_{1},\cdots,x_{n}\right)-\sum_{k=1}^{m}\lambda_{k}g_{k}\left(x_{1},\cdots,x_{n}\right) \]

平均時速

行きと帰りの時速がそれぞれわかっているときの平均時速はどうなるでしょうか?

(*)フルヴィッツの公式

\[ \zeta\left(1-s,a\right)=\frac{\Gamma\left(s\right)}{\left(2\pi\right)^{s}}\left\{ e^{-i\frac{\pi s}{2}}\Li_{s}\left(e^{2\pi ia}\right)+e^{i\frac{\pi s}{2}}\Li_{s}\left(e^{-2\pi ia}\right)\right\} \]