ガンマ関数 2020年6月28日 ガンマ関数の半整数値 \[ \Gamma\left(\frac{1}{2}+n\right)=\frac{(2n-1)!}{2^{2n-1}(n-1)!}\sqrt{\pi} \]
解析学 2020年6月23日 積分問題 \[ \int_{0}^{\infty}\frac{x^{s}}{\cosh^{2}x}dx=\frac{\Gamma(s+1)}{2^{s-1}}\eta(s) \]
ゼータ関数 2020年6月22日 ゼータ関数とイータ関数とガンマ関数 \[ \zeta(s)=\frac{1}{\Gamma(s)}\int_{0}^{\infty}\frac{x^{s-1}}{e^{x}-1}dx \]
代数学 2020年6月19日 e^(ikx)の和 \[ \sum_{k=-n}^{n}e^{ikx}=\frac{\sin\left\{ \left(n+\frac{1}{2}\right)x\right\} }{\sin\frac{x}{2}} \]
階乗冪 2020年6月17日 階乗冪(下降階乗・上昇階乗)の1/2値 \[ P\left(-\frac{1}{2},n\right)=\frac{(-1)^{n}(2n-1)!}{2^{2n-1}(n-1)!} \]
階乗冪 2020年6月16日 階乗冪(下降階乗・上昇階乗)の微分 \[ \frac{d}{dx}P(x,y) =P(x,y)\left\{ \psi(1+x)-\psi(1+x-y)\right\} \]
代数学 2020年5月25日 連続で出来る部分分数分解 \[ \frac{1}{x(x+a)^{n}}=\frac{1}{a^{n}x}-\sum_{k=1}^{n}\left(\frac{1}{a^{n-k+1}(x+1)^{k}}\right) \]
ガンマ関数 2020年5月21日 ディガンマ関数・ポリガンマ関数の相反公式 \[ \psi\left(1-z\right)-\psi\left(z\right)=\pi\tan^{-1}\left(\pi z\right) \]