カテゴリー: 位相空間
ハウスドルフ空間とT1空間の点列の極限点
ハウスドルフ空間ならば、点列の極限点が存在すれば一意的に決まる。
内部の最大性と閉包の最小性
\[
O\subseteq A\Leftrightarrow O\subseteq A^{i}
\]
空集合・全体集合の内部・外部・境界・閉包・導集合・孤立点全体の集合
\[
X^{s}=\left\{ x\in X;\left\{ x\right\} \in\mathcal{O}\right\}
\]
稠密集合・疎集合・完全集合・離散集合の定義
\[
A^{a}=X
\]
導集合・孤立点全体の集合の別表現
\[
A^{d}=\left\{ x\in A;\left\{ x\right\} \notin\mathcal{O}_{A},\right\} \cup\left(A^{f}\setminus A\right)
\]
位相空間での内部・閉包・境界・導集合・孤立点全体の集合と和集合・積集合
\[
A^{i}\cup B^{i}\subseteq\left(A\cup B\right)^{i}
\]
位相空間で集積点・孤立点を持たないとき
\[
A^{d}=\emptyset\Leftrightarrow\forall x\in X,\exists U_{x}\in\mathcal{O},U_{x}\cap A\subseteq\left\{ x\right\}
\]
位相空間での内部・外部・境界・閉包・導集合孤立点全体の集合の定義
\[
\exists U_{x}\in\mathcal{O},U_{x}\subseteq A
\]
位相空間での開集合・閉集合と内部・境界・閉包・導集合の基本
\[
A^{i}\subseteq A
\]
位相空間での閉集合系による位相
\[
F_{1},\cdots,F_{n}\in\mathcal{F}\rightarrow\bigcup_{k=1}^{n}F_{k}\in\mathcal{F}
\]
位相空間での位相と開集合閉集合の定義
\[
\forall\mathcal{A}\subseteq\mathcal{O},\bigcup_{A\in\mathcal{A}}A\in\mathcal{O}
\]