カテゴリー: 空間
T1空間と同値な条件
T1空間と単集合が閉集合は同値となる。
(*)分離公理(距離・正規・正則・T2・T1・T0・その他)同士の関係
\[
\text{距離空間}\Rightarrow\text{正規空間}\Rightarrow\text{正則空間}\Rightarrow T_{2}\text{空間}\Rightarrow T_{1}\text{空間}\Rightarrow T_{0}\text{空間}
\]
有限補有限位相は離散位相
\[
\left|X\right|<\infty\leftrightarrow\left(X,\mathcal{O}_{c}\right)=\left(X,2^{X}\right)
\]
実数では補有限位相は通常位相より弱い
\[
\mathcal{O}_{c}\subseteq\mathcal{O}_{n}
\]
補有限位相の定義
\[
\mathcal{O}_{c}=\left\{ A\subseteq X;\left|A^{c}\right|<\infty\right\} \land\left\{ \emptyset\right\}
\]
櫛(くし)空間と位相幾何学者の正弦曲線の定義
\[
\begin{cases}
A_{n}=\left\{ \left(\frac{1}{n},y\right);0<y\leq1\right\} \\
A_{\infty}=\left\{ \left(0,y\right);0<y\leq1\right\} \\
B=\left\{ \left(x,0\right);0\leq x\leq1\right\}
\end{cases}
\]