ヘヴィサイドの階段関数の負数・和・差
ヘヴィサイドの階段関数の負数・和・差
\(\delta_{ij}\)はクロネッカーのデルタ
(1)
\[ H_{a}\left(-x\right)=-H_{a}\left(x\right)+1+\left(2a-1\right)\delta_{0,x} \](2)
\[ H_{a}\left(x\right)+H_{b}\left(x\right)=2H_{\frac{a+b}{2}}\left(x\right) \](3)
\[ H_{a}\left(x\right)-H_{b}\left(x\right)=\left(a-b\right)\delta_{0,x} \](4)
\[ H_{c}\left(x\right)-H_{c}\left(y\right)=H_{c}\left(-y\right)-H_{c}\left(-x\right)+\left(2c-1\right)\left(\delta_{x,0}-\delta_{y,0}\right) \]-
\(H\left(x\right)\)はヘヴィサイドの階段関数\(\delta_{ij}\)はクロネッカーのデルタ
(1)
\begin{align*} H_{a}\left(-x\right) & =H_{\frac{1}{2}}\left(-x\right)+\left(a-\frac{1}{2}\right)\delta_{0,-x}\\ & =\frac{\sgn\left(-x\right)+1}{2}+\left(a-\frac{1}{2}\right)\delta_{0,-x}\\ & =-\frac{\sgn\left(x\right)+1}{2}+1+\left(a-\frac{1}{2}\right)\delta_{0,-x}\\ & =-H_{\frac{1}{2}}\left(x\right)+1+\left(a-\frac{1}{2}\right)\delta_{0,-x}\\ & =-\left(H_{\frac{1}{2}}\left(x\right)+\left(a-\frac{1}{2}\right)\delta_{0,x}\right)+1+2\left(a-\frac{1}{2}\right)\delta_{0,x}\\ & =-H_{a}\left(x\right)+1+\left(2a-1\right)\delta_{0,x} \end{align*}(2)
\begin{align*} H_{a}\left(x\right)+H_{b}\left(x\right) & =H_{a}\left(x\right)+H_{a}\left(x\right)+\left(b-a\right)\delta_{0,x}\\ & =2\left(H_{a}\left(x\right)+\frac{b-a}{2}\delta_{0,x}\right)\\ & =2\left(H_{a}\left(x\right)+\left(\frac{b+a}{2}-a\right)\delta_{0,x}\right)\\ & =2H_{\frac{a+b}{2}}\left(x\right) \end{align*}(3)
\begin{align*} H_{a}\left(x\right)-H_{b}\left(x\right) & =H_{a}\left(x\right)-\left(H_{a}\left(x\right)+\left(b-a\right)\delta_{0,x}\right)\\ & =\left(a-b\right)\delta_{0,x} \end{align*}(4)
(1)より、\begin{align*} H_{a}\left(x\right)-H_{a}\left(y\right) & =1-H_{a}\left(-x\right)+\left(2a-1\right)\delta_{x,0}-\left\{ 1-H_{a}\left(-y\right)+\left(2a-1\right)\delta_{y,0}\right\} \\ & =H_{a}\left(-y\right)-H_{a}\left(-x\right)+\left(2a-1\right)\left(\delta_{x,0}-\delta_{y,0}\right) \end{align*} となるので与式は成り立つ。
ページ情報
タイトル | ヘヴィサイドの階段関数の負数・和・差 |
URL | https://www.nomuramath.com/d3iuino6/ |
SNSボタン |
ヘヴィサイドの階段関数と符号関数の積
\[
\sgn\left(x\right)H_{a}\left(x\right)=H_{0}\left(x\right)
\]
ヘヴィサイドの階段関数の微分・積分と微分・積分表示
\[
\frac{dH\left(x\right)}{dx}=\delta\left(x\right)
\]
ヘヴィサイドの階段関数同士の変換
\[
H_{a}\left(x\right)=H_{b}\left(x\right)+\left(a-b\right)\delta_{0,x}
\]
ヘヴィサイドの階段関数の2定義値の和と差
\[
H\left(\pm_{1}1\right)\pm_{2}H\left(\pm_{1}1\right)=H\left(\pm_{2}1\right)\pm_{1}H\left(\pm_{2}1\right)
\]