正接関数・双曲線正接関数の多重対数関数表示
正接関数・双曲線正接関数の多重対数関数表示
正接関数・双曲線正接関数は多重対数関数を使って以下のように表示できる。
正接関数・双曲線正接関数は多重対数関数を使って以下のように表示できる。
(1)正接関数
\[ \tan^{\pm1}z=i^{\pm1}\left(1+2\Li_{0}\left(\mp e^{2iz}\right)\right) \](2)双曲線正接関数
\[ \tanh^{\pm1}z=1+2\Li_{0}\left(\mp e^{-2z}\right) \]-
\(\Li_{n}\left(z\right)\)は多重対数関数(1)
\begin{align*} \tan^{\pm1}z & =i^{\mp1}\frac{e^{iz}\mp e^{-iz}}{e^{iz}\pm e^{-iz}}\\ & =i^{\mp1}\frac{e^{2iz}\mp1}{e^{2iz}\pm1}\\ & =-i^{\mp1}\frac{1\mp e^{2iz}}{1\pm e^{2iz}}\\ & =e^{-i\pi}e^{\mp\frac{\pi}{2}i}\frac{1\pm e^{2iz}\mp2e^{2iz}}{1\pm e^{2iz}}\\ & =e^{\pm\frac{\pi}{2}i}\left(1+2\frac{\mp e^{2iz}}{1\pm e^{2iz}}\right)\\ & =i^{\pm1}\left(1+2\Li_{0}\left(\mp e^{2iz}\right)\right) \end{align*}(2)
\begin{align*} \tanh^{\pm1}z & =\left(i^{-1}\tan\left(iz\right)\right)^{\pm1}\\ & =i^{\mp1}\tan^{\pm1}\left(iz\right)\\ & =i^{\mp1}i^{\pm1}\left(1+2\Li_{0}\left(\mp e^{-2z}\right)\right)\\ & =1+2\Li_{0}\left(\mp e^{-2z}\right) \end{align*}ページ情報
タイトル | 正接関数・双曲線正接関数の多重対数関数表示 |
URL | https://www.nomuramath.com/d6pmhb0k/ |
SNSボタン |
双曲線関数と三角関数の級数展開
\[
\tanh x=\sum_{k=1}^{\infty}\frac{2^{2k}\left(2^{2k}-1\right)B_{2k}}{(2k)!}x{}^{2k-1}
\]
三角関数と双曲線関数のn乗積分
\[
\int\sin^{2n+m_{\pm}}xdx=\frac{\Gamma\left(n+\frac{1}{2}+\frac{m_{\pm}}{2}\right)}{\Gamma\left(n+1+\frac{m_{\pm}}{2}\right)}\left\{ -\frac{1}{2}\sum_{k=0}^{n-1}\left(\frac{\Gamma\left(k+1+\frac{m_{\pm}}{2}\right)}{\Gamma\left(k+\frac{3}{2}+\frac{m_{\pm}}{2}\right)}\cos x\sin^{2k+1+m_{\pm}}x\right)+\frac{\Gamma\left(1+\frac{m_{\pm}}{2}\right)}{\Gamma\left(\frac{1}{2}+\frac{m_{\pm}}{2}\right)}\int\sin^{m_{\pm}}xdx\right\}
\]
三角関数・双曲線関数の実部と虚部
\[
\sin z=\sin\left(\Re z\right)\cosh\left(\Im z\right)+i\cos\left(\Re z\right)\sinh\left(\Im z\right)
\]
ピタゴラスの基本三角関数公式
\[
\cos^{2}x+\sin^{2}x=1
\]