ハイパー演算子の優先順位
ハイパー演算子の優先順位
ハイパー演算子の結合性を左結合にしたものを
\begin{align*} I_{n+1}\left(a,b\right) & =a_{\left(n+1\right)}b\\ & =\underbrace{\left(\left(a^{\left(n\right)}a\right)^{\left(n\right)}\cdots a\right)^{\left(n\right)}a}_{b\;copies\;of\;a} \end{align*} で定義すると、
\[ I_{n+1}\left(a,b\right)=I_{n+1}\left(a,b-1\right)^{\left(n\right)}a \] となる。
ハイパー演算子の結合性を左結合にしたものを
\begin{align*} I_{n+1}\left(a,b\right) & =a_{\left(n+1\right)}b\\ & =\underbrace{\left(\left(a^{\left(n\right)}a\right)^{\left(n\right)}\cdots a\right)^{\left(n\right)}a}_{b\;copies\;of\;a} \end{align*} で定義すると、
\[ I_{n+1}\left(a,b\right)=I_{n+1}\left(a,b-1\right)^{\left(n\right)}a \] となる。
-
\(a^{\left(n\right)}b\)はハイパー演算子\begin{align*}
I_{n+1}\left(a,b\right) & =\underbrace{\left(\left(a^{\left(n\right)}a\right)^{\left(n\right)}\cdots a\right)^{\left(n\right)}a}_{b\;copies\;of\;a}\\
& =I_{n+1}\left(a,b-1\right)^{\left(n\right)}a
\end{align*}
ページ情報
タイトル | ハイパー演算子の優先順位 |
URL | https://www.nomuramath.com/dctuzacs/ |
SNSボタン |
テトレーションと対数
\[
H_{4}\left(a,n\right)=\log_{a}^{m\circ}H_{4}\left(a,n+m\right)
\]
アッカーマン関数の定義と解
\[
A\left(m,n\right)=2\uparrow^{m-2}\left(n+3\right)-3
\]
ハイバー演算子とクヌースの矢印表記の関係
\[
H_{n}\left(a,b\right)=a\uparrow^{n-2}b\;,\;n\in\mathbb{Z}
\]
コンウェイのチェーン表記の優先順位
\begin{align*}
& a\rightarrow\left(b\rightarrow c\right)\\
& a\rightarrow b\rightarrow c\\
& \left(a\rightarrow b\right)\rightarrow c
\end{align*}