ハイパー演算子の優先順位
ハイパー演算子の優先順位
ハイパー演算子の結合性を左結合にしたものを
\begin{align*} I_{n+1}\left(a,b\right) & =a_{\left(n+1\right)}b\\ & =\underbrace{\left(\left(a^{\left(n\right)}a\right)^{\left(n\right)}\cdots a\right)^{\left(n\right)}a}_{b\;copies\;of\;a} \end{align*} で定義すると、
\[ I_{n+1}\left(a,b\right)=I_{n+1}\left(a,b-1\right)^{\left(n\right)}a \] となる。
ハイパー演算子の結合性を左結合にしたものを
\begin{align*} I_{n+1}\left(a,b\right) & =a_{\left(n+1\right)}b\\ & =\underbrace{\left(\left(a^{\left(n\right)}a\right)^{\left(n\right)}\cdots a\right)^{\left(n\right)}a}_{b\;copies\;of\;a} \end{align*} で定義すると、
\[ I_{n+1}\left(a,b\right)=I_{n+1}\left(a,b-1\right)^{\left(n\right)}a \] となる。
-
\(a^{\left(n\right)}b\)はハイパー演算子\begin{align*}
I_{n+1}\left(a,b\right) & =\underbrace{\left(\left(a^{\left(n\right)}a\right)^{\left(n\right)}\cdots a\right)^{\left(n\right)}a}_{b\;copies\;of\;a}\\
& =I_{n+1}\left(a,b-1\right)^{\left(n\right)}a
\end{align*}
ページ情報
タイトル | ハイパー演算子の優先順位 |
URL | https://www.nomuramath.com/dctuzacs/ |
SNSボタン |
テトレーションと対数
\[
H_{4}\left(a,n\right)=\log_{a}^{m\circ}H_{4}\left(a,n+m\right)
\]
2年生の夢(高さ2のテトレーションの0から1までの定積分)
\[
\int_{0}^{1}\frac{1}{x^{x}}dx=\sum_{k=1}^{\infty}\frac{1}{k^{k}}
\]
コンウェイのチェーン表記の定義
\[
X\rightarrow\left(a+1\right)\rightarrow\left(b+1\right)=X\rightarrow\left\{ X\rightarrow a\rightarrow\left(b+1\right)\right\} \rightarrow b
\]
コンウェイのチェーン表記の別定義
\[
a\rightarrow b\rightarrow c=a\uparrow^{c}b
\]