分母の2乗をどうするかな?
分母の2乗をどうするかな?
次の定積分を求めよ。
\[ \int_{0}^{\infty}\frac{x^{2}}{\left(1+e^{x}\right)^{2}}dx=? \]
次の定積分を求めよ。
\[ \int_{0}^{\infty}\frac{x^{2}}{\left(1+e^{x}\right)^{2}}dx=? \]
\begin{align*}
\int_{0}^{\infty}\frac{x^{2}}{\left(1+e^{x}\right)^{2}}dx & =\int_{0}^{\infty}\frac{x^{2}}{\left(1+e^{-x}\right)^{2}e^{2x}}dx\\
& =\int_{0}^{\infty}x^{2}e^{-x}\frac{d}{dx}\frac{1}{1+e^{-x}}dx\\
& =\int_{0}^{\infty}x^{2}e^{-x}\frac{d}{dx}\sum_{k=0}^{\infty}\left(-e^{-x}\right)^{k}dx\\
& =\int_{0}^{\infty}x^{2}e^{-x}\sum_{k=0}^{\infty}\left(-1\right)^{k}\left(-k\right)e^{-xk}dx\\
& =\sum_{k=0}^{\infty}\left(-1\right)^{k}\left(-k\right)\int_{0}^{\infty}x^{2}e^{-\left(k+1\right)x}dx\\
& =\sum_{k=0}^{\infty}\left(-1\right)^{k}\left(-k\right)\mathcal{L}_{x}\left[x^{2}H\left(x\right)\right]\left(k+1\right)\\
& =\sum_{k=0}^{\infty}\left(-1\right)^{k}\left(-k\right)\frac{2!}{\left(k+1\right)^{2+1}}\\
& =2\sum_{k=0}^{\infty}\left(-1\right)^{k+1}\frac{k}{\left(k+1\right)^{3}}\\
& =2\sum_{k=0}^{\infty}\left(-1\right)^{k+1}\frac{k+1-1}{\left(k+1\right)^{3}}\\
& =2\sum_{k=0}^{\infty}\left(-1\right)^{k+1}\left(\frac{1}{\left(k+1\right)^{2}}-\frac{1}{\left(k+1\right)^{3}}\right)\\
& =-2\sum_{k=1}^{\infty}\left(-1\right)^{k+1}\left(\frac{1}{k^{2}}-\frac{1}{k^{3}}\right)\\
& =-2\left(\eta\left(2\right)-\eta\left(3\right)\right)\\
& =-2\left(\left(1-\frac{1}{2^{1}}\right)\zeta\left(2\right)-\left(1-\frac{1}{2^{2}}\right)\eta\left(3\right)\right)\\
& =-\zeta\left(2\right)+\frac{3}{2}\zeta\left(3\right)\\
& =-\frac{\pi^{2}}{6}+\frac{3}{2}\zeta\left(3\right)
\end{align*}
ページ情報
タイトル | 分母の2乗をどうするかな? |
URL | https://www.nomuramath.com/dgnwxmf2/ |
SNSボタン |
分母に(1+x²)²を含む積分
\[
\int\frac{1}{\left(1+x^{2}\right)^{2}}dx=\frac{1}{2}\tan^{\bullet}x+\frac{x}{2\left(1+x^{2}\right)}+C
\]
分母に1乗と2乗ルートの積分
\[
\int\frac{1}{\left(z\pm1\right)\sqrt{z^{2}-1}}dz=\frac{\sqrt{z^{2}-1}}{\pm z+1}+C
\]
分母にxの20乗がある定積分
\[
\int_{2}^{\infty}\frac{x^{9}}{x^{20}-48x^{10}+575}dx=?
\]
分母に双曲線関数で分子に3角関数の定積分
\[
\int_{-\infty}^{\infty}\frac{\cos x}{\cosh x}dx=?
\]