微分と積分の関係
微分と積分の関係
\(ff^{\bullet}\left(a\right)=a\)が成り立つとき、
\[ f\left(x\right)=\int_{f^{\bullet}\left(a\right)}^{x}f'\left(x\right)dx-a \]
\(ff^{\bullet}\left(a\right)=a\)が成り立つとき、
\[ f\left(x\right)=\int_{f^{\bullet}\left(a\right)}^{x}f'\left(x\right)dx-a \]
\begin{align*}
\int_{f^{\bullet}\left(a\right)}^{x}f'\left(x\right)dx & =\left[f\left(x\right)\right]_{x=f^{\bullet}\left(a\right)}^{x=x}\\
& =f(x)-ff^{\bullet}\left(a\right)\\
& =f\left(x\right)-a
\end{align*}
これより、与式は成り立つ。
ページ情報
タイトル | 微分と積分の関係 |
URL | https://www.nomuramath.com/dqpk99jx/ |
SNSボタン |
偶関数の分母に指数関数+1がある対称な定積分
\[
\int_{-c}^{c}\frac{f_{e}\left(x\right)}{1+a^{x}}dx=\int_{0}^{c}f_{e}\left(x\right)dx
\]
基本関数の微分
\[
\left(a^{x}\right)'=a^{x}\log a
\]
ライプニッツの法則
\[
\left(fg\right)^{(n)}=\sum_{k=0}^{n}C(n,k)f^{(k)}g^{(n-k)}
\]
微分の基本公式
\[
\left(f(x)g(x)\right)'=f'(x)g(x)+f(x)g'(x)
\]