2重根号
\(0\leq a\pm|b|\sqrt{c}\)のとき、
\[ \sqrt{a\pm|b|\sqrt{c}}=\frac{\sqrt{2}}{2}\left(\sqrt{a+\sqrt{a^{2}-b^{2}c}}\pm\sqrt{a-\sqrt{a^{2}-b^{2}c}}\right) \]
\[ \sqrt{a\pm|b|\sqrt{c}}=\frac{\sqrt{2}}{2}\left(\sqrt{a+\sqrt{a^{2}-b^{2}c}}\pm\sqrt{a-\sqrt{a^{2}-b^{2}c}}\right) \]
\(a^{2}-b^{2}c\)が平方数のとき2重根号が外せる
\[
\alpha_{\pm}=\sqrt{a\pm|b|\sqrt{c}}
\]
とおくと、
\begin{align*} \alpha_{\pm}{}^{2}+\alpha_{\mp}{}^{2} & =a\pm|b|\sqrt{c}+a\mp|b|\sqrt{c}\\ & =2a \end{align*} \begin{align*} \alpha_{\pm}\alpha_{\mp} & =\sqrt{\left(a\pm|b|\sqrt{c}\right)\left(a\mp|b|\sqrt{c}\right)}\\ & =\sqrt{a^{2}-b^{2}c} \end{align*} より、
\begin{align*} \alpha_{\pm} & =\frac{\left(\alpha_{\pm}+\alpha_{\mp}\right)+\left(\alpha_{\pm}-\alpha_{\mp}\right)}{2}\\ & =\frac{\left|\alpha_{\pm}+\alpha_{\mp}\right|\pm\left|\alpha_{\pm}-\alpha_{\mp}\right|}{2}\\ & =\frac{\sqrt{\left(\alpha_{\pm}+\alpha_{\mp}\right)^{2}}\pm\sqrt{\left(\alpha_{\pm}-\alpha_{\mp}\right)^{2}}}{2}\\ & =\frac{\sqrt{\alpha_{\pm}{}^{2}+\alpha_{\mp}{}^{2}+2\alpha_{\pm}\alpha_{\mp}}\pm\sqrt{\alpha_{\pm}{}^{2}+\alpha_{\mp}{}^{2}-2\alpha_{\pm}\alpha_{\mp}}}{2}\\ & =\frac{\sqrt{2}}{2}\left(\sqrt{a+\sqrt{a^{2}-b^{2}c}}\pm\sqrt{a-\sqrt{a^{2}-b^{2}c}}\right) \end{align*}
\begin{align*} \alpha_{\pm}{}^{2}+\alpha_{\mp}{}^{2} & =a\pm|b|\sqrt{c}+a\mp|b|\sqrt{c}\\ & =2a \end{align*} \begin{align*} \alpha_{\pm}\alpha_{\mp} & =\sqrt{\left(a\pm|b|\sqrt{c}\right)\left(a\mp|b|\sqrt{c}\right)}\\ & =\sqrt{a^{2}-b^{2}c} \end{align*} より、
\begin{align*} \alpha_{\pm} & =\frac{\left(\alpha_{\pm}+\alpha_{\mp}\right)+\left(\alpha_{\pm}-\alpha_{\mp}\right)}{2}\\ & =\frac{\left|\alpha_{\pm}+\alpha_{\mp}\right|\pm\left|\alpha_{\pm}-\alpha_{\mp}\right|}{2}\\ & =\frac{\sqrt{\left(\alpha_{\pm}+\alpha_{\mp}\right)^{2}}\pm\sqrt{\left(\alpha_{\pm}-\alpha_{\mp}\right)^{2}}}{2}\\ & =\frac{\sqrt{\alpha_{\pm}{}^{2}+\alpha_{\mp}{}^{2}+2\alpha_{\pm}\alpha_{\mp}}\pm\sqrt{\alpha_{\pm}{}^{2}+\alpha_{\mp}{}^{2}-2\alpha_{\pm}\alpha_{\mp}}}{2}\\ & =\frac{\sqrt{2}}{2}\left(\sqrt{a+\sqrt{a^{2}-b^{2}c}}\pm\sqrt{a-\sqrt{a^{2}-b^{2}c}}\right) \end{align*}
ページ情報
タイトル | 2重根号 |
URL | https://www.nomuramath.com/dv97ov6g/ |
SNSボタン |
一般化調和数の通常型母関数と調和数の指数型母関数
\[
\sum_{k=1}^{\infty}H_{k,m}z^{k}=\frac{\Li_{m}(z)}{1-z}
\]
関数の極限
\[
\forall\epsilon>0,\exists\delta>0;\forall x\in\mathbb{R},0<\left|x-a\right|<\delta\Rightarrow\left|f\left(x\right)-b\right||<\epsilon
\]
対数の指数
\[
a^{\log_{b}c}=c^{\log_{b}a}
\]
ファウルハーバー公式(冪乗和公式)
\[
\sum_{j=1}^{n}j^{m}=\frac{1}{m+1}\left(B_{m+1}(n+1)-B_{m+1}(1)\right)
\]