分母に階乗の和を含む総和
分母に階乗の和を含む総和
\[ \frac{3}{1!+2!+3!}+\frac{4}{2!+3!+4!}+\frac{5}{3!+4!+5!}+\cdots+\frac{100}{98!+99!+100!} \] を求めよ。
\[ \frac{3}{1!+2!+3!}+\frac{4}{2!+3!+4!}+\frac{5}{3!+4!+5!}+\cdots+\frac{100}{98!+99!+100!} \] を求めよ。
\begin{align*}
\frac{3}{1!+2!+3!}+\frac{4}{2!+3!+4!}+\frac{5}{3!+4!+5!}+\cdots+\frac{100}{98!+99!+100!} & =\sum_{k=1}^{98}\frac{k+2}{k!+\left(k+1\right)!+\left(k+2\right)!}\\
& =\sum_{k=1}^{98}\frac{k+2}{k!\left(1+k+1+\left(k+1\right)\left(k+2\right)\right)}\\
& =\sum_{k=1}^{98}\frac{k+2}{k!\left(k^{2}+4k+4\right)}\\
& =\sum_{k=1}^{98}\frac{1}{k!\left(k+2\right)}\\
& =\sum_{k=1}^{98}\frac{k+1}{\left(k+2\right)!}\\
& =\sum_{k=1}^{98}\frac{k+2-1}{\left(k+2\right)!}\\
& =\sum_{k=1}^{98}\frac{1}{\left(k+1\right)!}-\frac{1}{\left(k+2\right)!}\\
& =\frac{1}{2}-\frac{1}{100!}
\end{align*}
ページ情報
タイトル | 分母に階乗の和を含む総和 |
URL | https://www.nomuramath.com/dzokr9u5/ |
SNSボタン |
総乗の極限問題
\[
\lim_{n\rightarrow\infty}\prod_{k=1}^{n}\left(1+\frac{k}{n^{2}}\right)=?
\]
偶数ゼータ関数と円周率を含む交代級数
\[
\frac{\zeta\left(2\right)}{\pi^{2}}-\frac{\zeta\left(4\right)}{\pi^{4}}+\frac{\zeta\left(6\right)}{\pi^{6}}-\frac{\zeta\left(8\right)}{\pi^{8}}+\cdots=?
\]
分母にルート同士の和がある総和
\[
\frac{1}{\sqrt{5}+\sqrt{6}}+\frac{1}{\sqrt{6}+\sqrt{7}}+\cdots+\frac{1}{\sqrt{28}+\sqrt{29}}+\frac{1}{\sqrt{29}+\sqrt{30}}=?
\]
2項係数の対称性を使います
\[
\sum_{k=0}^{n}kC^{2}\left(n,k\right)=?
\]