稠密集合・疎集合・完全集合・離散集合の定義
稠密集合・疎集合・完全集合・離散集合の定義
位相空間\((X,\mathcal{O})\)、部分集合\(A\subseteq X\)とする。
\[ A^{a}=X \] のとき\(A\)は\(X\)で稠密(ちゅうみつ)集合という。
\[ A^{ai}=\emptyset \] のとき\(A\)は\(X\)で疎(そ)集合という。
\[ A^{d}=A \] のとき\(A\)は完全集合という。
\[ A^{s}=A \] のとき、\(A\)を離散集合という。
\(A^{a}\)は閉包
\(A^{d}\)は導集合
\(A^{s}\)は孤立点全体の集合
位相空間\((X,\mathcal{O})\)、部分集合\(A\subseteq X\)とする。
(1)稠密集合
\(A\)の閉包が全体集合になるとき、すなわち、\[ A^{a}=X \] のとき\(A\)は\(X\)で稠密(ちゅうみつ)集合という。
(2)疎集合
\(A\)の閉包の内部が空集合になるとき、すなわち、\[ A^{ai}=\emptyset \] のとき\(A\)は\(X\)で疎(そ)集合という。
(3)完全集合
\(A\)の導集合が\(A\)になるとき、すなわち、\[ A^{d}=A \] のとき\(A\)は完全集合という。
(4)離散集合
\(A\)の孤立点全体の集合が\(A\)となるとき、すなわち、\[ A^{s}=A \] のとき、\(A\)を離散集合という。
-
\(A^{i}\)は内部\(A^{a}\)は閉包
\(A^{d}\)は導集合
\(A^{s}\)は孤立点全体の集合
(1)稠密集合
密着位相\(\left(X,\left\{ \emptyset,X\right\} \right)\)は空集合でない任意の部分集合\(A\subseteq X\)に対し、\(A\)は稠密集合となる。\(X=\mathbb{R}\)として通常位相をとると、有理数全体の集合\(\mathbb{Q}\)は稠密集合となる。
(2)疎集合
位相空間\(\left(\left\{ a,b\right\} ,\left\{ \emptyset,\left\{ a\right\} ,\left\{ a,b\right\} \right\} \right)\)で\(\left\{ b\right\} ^{ai}=\left\{ b\right\} ^{i}=\emptyset\)となるので\(\left\{ b\right\} \)は疎集合となる。\(X=\mathbb{R}\)として通常位相をとると、\(\left\{ \frac{1}{n};n\in\mathbb{N}\right\} \)は疎集合となる。
(3)完全集合
\(2\leq X\)の密着位相\(\left(X,\left\{ \emptyset,X\right\} \right)\)で\(X^{d}=X\)となるので\(X\)は完全集合となる。位相空間\(\left(\left\{ a,b,c\right\} ,\left\{ \emptyset,\left\{ a,b\right\} ,\left\{ c\right\} ,\left\{ a,b,c\right\} \right\} \right)\)で\(\left\{ a,b\right\} ^{d}=\left\{ a,b\right\} \)となるので\(\left\{ a,b\right\} \)は完全集合となる。
\(X=\mathbb{R}\)として通常位相をとると、\(\left[0,1\right]\)は完全集合となる。
(4)離散集合
離散位相\(\left(X,2^{X}\right)\)は任意の部分集合\(A\subseteq X\)に対し、\(A\)は離散集合となる。\(X=\mathbb{R}\)として通常位相をとると、\(\left\{ \frac{1}{n};n\in\mathbb{N}\right\} \)は離散集合となる。
ページ情報
タイトル | 稠密集合・疎集合・完全集合・離散集合の定義 |
URL | https://www.nomuramath.com/e9mrjttl/ |
SNSボタン |
冪乗の性質
\[
\pv\alpha^{\beta}\pv\alpha^{\gamma}=\pv\alpha^{\beta+\gamma}
\]
フレネル積分の値
\[
\int_{0}^{\infty}\sin\left(x^{2}\right)dx=\frac{\sqrt{2\pi}}{4}
\]
存在命題(論理和)と全称命題(論理積)の順序変更
\[
\exists x\in X,\forall y\in Y,P\left(x,y\right)\Rightarrow\forall y\in Y,\exists x\in X,P\left(x,y\right)
\]
部分積分と繰り返し部分積分
\[
\int f(x)g(x)dx=\sum_{k=0}^{n-1}\left(-1\right)^{k}f^{(-(k+1))}(x)g^{(k)}(x)+(-1)^{n}\int f^{(-n)}(x)g^{(n)}(x)dx
\]