ハウスドルフ空間の点列の極限点

ハウスドルフ空間の点列の極限点
ハウスドルフ空間\(\left(X,\mathcal{O}\right)\)ならば、点列の極限点が存在すれば一意的に決まる。
逆は一般的に成り立たない。

\(\Rightarrow\)

\(x\ne y\)として、点列の極限点が\(x,y\in X\)の2つになると仮定する。
このとき、\(\mathcal{U}_{x},\mathcal{U}_{y}\)をそれぞれ元\(x,y\)を含む開近傍系とすると極限点の定義より、
\[ \forall U_{x}\in\mathcal{U}_{x},\exists n_{1}\in\mathbb{N},n_{1}<m\rightarrow x_{m}\in U_{x} \] \[ \forall U_{y}\in\mathcal{U}_{y},\exists n_{2}\in\mathbb{N},n_{2}<m\rightarrow x_{m}\in U_{y} \] となるので、\(n=\max\left\{ n_{1},n_{2}\right\} \)とおくと、
\[ n<m\rightarrow x_{m}\in U_{x}\land x_{m}\in U_{y}\Leftrightarrow n<m\rightarrow x_{m}\in U_{x}\cap U_{y} \] となるので、\(U_{x}\cap U_{y}\ne\emptyset\)となりハウスドルフ空間であることに矛盾が生じる。
故に背理法より、極限点が存在すれば一意的に決まる。

\(\Leftarrow\)は一般的に成り立たない

反例で示す
実数全体の集合\(\mathbb{R}\)に補有限位相を入れる。
このとき点列として\(\left(x_{n}=0\right)_{n\in\mathbb{N}}\)をとれば、0以外の任意の元を\(c\)とすると\(X\setminus\left\{ c\right\} \)は0を含み\(c\)は含まない開集合となるので、極限点は一意的に0になる。
しかし補有限位相はハウスドルフではないので題意は成り立たない。
従って\(\Leftarrow\)は一般的に成り立たない。

ページ情報
タイトル
ハウスドルフ空間の点列の極限点
URL
https://www.nomuramath.com/eo09tscy/
SNSボタン