ディガンマ関数・ポリガンマ関数の漸化式・正整数値・半正整数値
ディガンマ関数・ポリガンマ関数の漸化式・正整数値・半正整数値
\[ \psi^{\left(n\right)}\left(z+1\right)=\psi^{\left(n\right)}\left(z\right)+\frac{\left(-1\right)^{n}n!}{z^{n+1}} \]
\[ \psi^{\left(n\right)}\left(1\right)=-\left(-1\right)^{n}n!\zeta\left(n+1\right) \]
\[ \psi\left(m\right)=H_{m-1}-\gamma \] 一般的に \(m\in\mathbb{C}\setminus\mathbb{N}_{0}^{-}\)で成り立ちます。
\[ \psi^{\left(n\right)}\left(z+m\right)=\psi^{\left(n\right)}\left(z+1\right)+\left(-1\right)^{n}n!\sum_{k=1}^{m-1}\frac{1}{\left(z+k\right)^{n+1}} \]
\[ \psi^{(n)}\left(m\right)=\left(-1\right)^{n}n!\left(H_{m-1,n+1}-\zeta\left(n+1\right)\right) \] 一般的に \(m\in\mathbb{C}\setminus\mathbb{N}_{0}^{-}\)で成り立ちます。
\[ \psi^{(n)}\left(\frac{1}{2}\right)=-\left(-1\right)^{n}n!\left(2^{n+1}-1\right)\left(\zeta\left(n+1\right)\right) \]
\[ \psi\left(n-\frac{1}{2}\right)=H_{n-1}-2\sum_{j=1}^{2n-2}\frac{\left(-1\right)^{j}}{j}-\gamma-2\log2 \]
(1)ディガンマ関数の漸化式
\[ \psi\left(z+1\right)=\psi\left(z\right)+\frac{1}{z} \](2)ポリガンマ関数の漸化式
\(n\in\mathbb{N}_{0}\)とする。\[ \psi^{\left(n\right)}\left(z+1\right)=\psi^{\left(n\right)}\left(z\right)+\frac{\left(-1\right)^{n}n!}{z^{n+1}} \]
(3)ディガンマ関数の1値
\[ \psi\left(1\right)=-\gamma \](4)ポリガンマ関数の1値
\(n\in\mathbb{N}\)のとき、\[ \psi^{\left(n\right)}\left(1\right)=-\left(-1\right)^{n}n!\zeta\left(n+1\right) \]
(5)ディガンマ関数の正整数値
\(m\in\mathbb{N}\)のとき、\[ \psi\left(m\right)=H_{m-1}-\gamma \] 一般的に \(m\in\mathbb{C}\setminus\mathbb{N}_{0}^{-}\)で成り立ちます。
(6)ポリガンマ関数の値
\(n\in\mathbb{N}_{0},m\in\mathbb{Z},z-m\notin\mathbb{N}_{0}^{-}\)のとき、\[ \psi^{\left(n\right)}\left(z+m\right)=\psi^{\left(n\right)}\left(z+1\right)+\left(-1\right)^{n}n!\sum_{k=1}^{m-1}\frac{1}{\left(z+k\right)^{n+1}} \]
(7)ポリガンマ関数の正整数値
\(n,m\in\mathbb{N}\)のとき、\[ \psi^{(n)}\left(m\right)=\left(-1\right)^{n}n!\left(H_{m-1,n+1}-\zeta\left(n+1\right)\right) \] 一般的に \(m\in\mathbb{C}\setminus\mathbb{N}_{0}^{-}\)で成り立ちます。
(8)ディガンマ関数の1/2値
\[ \psi\left(\frac{1}{2}\right)=-\gamma-2\log2 \](9)ポリガンマ関数の1/2値
\(n\in\mathbb{N}\)とする。\[ \psi^{(n)}\left(\frac{1}{2}\right)=-\left(-1\right)^{n}n!\left(2^{n+1}-1\right)\left(\zeta\left(n+1\right)\right) \]
(10)ディガンマ関数の半正整数値
\(n\in\mathbb{N}\)のとき、\[ \psi\left(n-\frac{1}{2}\right)=H_{n-1}-2\sum_{j=1}^{2n-2}\frac{\left(-1\right)^{j}}{j}-\gamma-2\log2 \]
-
\(H_{n}\)は調和数、\(H_{m,n}\)は一般化調和数。(1)
\begin{align*} \psi\left(z+1\right) & =\frac{d}{d\left(z+1\right)}\log\Gamma\left(z+1\right)\\ & =\frac{dz}{d\left(z+1\right)}\frac{d}{dz}\log\left(z\Gamma\left(z\right)\right)\\ & =\frac{d}{dz}\left(\log z+\log\Gamma\left(z\right)\right)\\ & =\frac{1}{z}+\psi\left(z\right) \end{align*}(1)-2
\begin{align*} \psi(z+1) & =\lim_{n\rightarrow\infty}\left(\log n-\sum_{k=0}^{n}\frac{1}{z+1+k}\right)\\ & =\lim_{n\rightarrow\infty}\left(\log n-\sum_{k=1}^{n}\frac{1}{z+k}\right)\\ & =\lim_{n\rightarrow\infty}\left(\log n-\sum_{k=0}^{n}\frac{1}{z+k}\right)+\frac{1}{z}\\ & =\psi(z)+\frac{1}{z} \end{align*}(2)
\begin{align*} \psi^{\left(n\right)}\left(z+1\right) & =\frac{d^{n}}{dz^{n}}\psi\left(z+1\right)\\ & =\frac{d^{n}}{dz^{n}}\left(\psi\left(z\right)+\frac{1}{z}\right)\\ & =\psi^{\left(n\right)}\left(z\right)+\frac{d^{n}}{dz^{n}}\frac{1}{z}\\ & =\psi^{\left(n\right)}\left(z\right)+\frac{P\left(-1,n\right)}{z^{n+1}}\\ & =\psi^{\left(n\right)}\left(z\right)+\frac{\left(-1\right)^{n}n!}{z^{n+1}} \end{align*}(2)-2
\begin{align*} \psi^{\left(n\right)}(z+1) & =\frac{d^{n}}{dz^{n}}\psi\left(z+1\right)\\ & =\frac{d^{n+1}}{dz^{n+1}}\log\Gamma\left(z+1\right)\\ & =\frac{d^{n+1}}{dz^{n+1}}\log\left(z\Gamma\left(z\right)\right)\\ & =\frac{d^{n+1}}{dz^{n+1}}\left(\log\Gamma\left(z\right)+\log z\right)\\ & =\frac{d^{n}}{dz^{n}}\psi\left(z\right)+\frac{d^{n}}{dz^{n}}\frac{1}{z}\\ & =\psi^{\left(n\right)}\left(z\right)+\frac{\left(-1\right)^{n}n!}{z^{n+1}} \end{align*}(3)
\begin{align*} \psi\left(1\right) & =-\gamma-\sum_{k=0}^{\infty}\left(\frac{1}{1+k}-\frac{1}{k+1}\right)\\ & =-\gamma \end{align*}(4)
\begin{align*} \psi^{\left(n\right)}\left(1\right) & =\left(-1\right)^{n+1}n!\sum_{k=0}^{\infty}\frac{1}{\left(1+k\right)^{n+1}}\\ & =-\left(-1\right)^{n}n!\zeta\left(n+1\right) \end{align*}(5)
\begin{align*} \psi\left(m\right) & =\sum_{j=1}^{m-1}\left(\psi\left(j+1\right)-\psi\left(j\right)\right)+\psi\left(1\right)\\ & =\sum_{j=1}^{m-1}\frac{1}{j}+\psi\left(1\right)\\ & =H_{m-1}-\gamma \end{align*}(6)
\begin{align*} \psi^{\left(n\right)}\left(z+m\right) & =\psi^{\left(n\right)}\left(z+1\right)+\sum_{k=1}^{m-1}\left(\psi^{\left(n\right)}\left(z+k+1\right)-\psi^{\left(n\right)}\left(z+k\right)\right)\\ & =\psi^{\left(n\right)}\left(z+1\right)+\sum_{k=1}^{m-1}\frac{\left(-1\right)^{n}n!}{\left(z+k\right)^{n+1}}\\ & =\psi^{\left(n\right)}\left(z+1\right)+\left(-1\right)^{n}n!\sum_{k=1}^{m-1}\frac{1}{\left(z+k\right)^{n+1}} \end{align*}(7)
\begin{align*} \psi^{(n)}\left(m\right) & =\left(-1\right)^{n+1}n!\sum_{k=0}^{\infty}\frac{1}{\left(m+k\right)^{n+1}}\\ & =\left(-1\right)^{n+1}n!\left(\sum_{k=0}^{-m}\frac{1}{\left(m+k\right)^{n+1}}+\sum_{k=-m+1}^{\infty}\frac{1}{\left(m+k\right)^{n+1}}\right)\\ & =\left(-1\right)^{n+1}n!\left(-\sum_{k=-m+1}^{-1}\frac{1}{\left(m+k\right)^{n+1}}+\zeta\left(n+1\right)\right)\\ & =\left(-1\right)^{n}n!\left(\sum_{k=1}^{m-1}\frac{1}{k^{n+1}}-\zeta\left(n+1\right)\right)\\ & =\left(-1\right)^{n}n!\left(H_{m-1,n+1}-\zeta\left(n+1\right)\right) \end{align*}(8)
\begin{align*} \psi\left(\frac{1}{2}\right) & =-\gamma-\lim_{n\rightarrow\infty}\sum_{k=0}^{n}\left(\frac{1}{\frac{1}{2}+k}-\frac{1}{k+1}\right)\\ & =-\gamma-\lim_{n\rightarrow\infty}\sum_{k=0}^{n}\left(\frac{2}{1+2k}-\frac{1}{k+1}\right)\\ & =-\gamma-2\lim_{n\rightarrow\infty}\sum_{k=0}^{n}\left(\frac{1}{1+2k}-\frac{1}{2(k+1)}\right)\\ & =-\gamma-2\lim_{n\rightarrow\infty}\sum_{k=0}^{n}\left(\frac{\left(-1\right)^{2k+1+1}}{2k+1}+\frac{\left(-1\right)^{2(k+1)+1}}{2\left(k+1\right)}\right)\\ & =-\gamma-2\lim_{n\rightarrow\infty}\sum_{k=1}^{2n+2}\left(\frac{\left(-1\right)^{k+1}}{k}\right)\\ & =-\gamma-2\log2 \end{align*}(9)
\begin{align*} \psi^{(n)}\left(\frac{1}{2}\right) & =\left(-1\right)^{n+1}n!\sum_{k=0}^{\infty}\frac{1}{\left(\frac{1}{2}+k\right)^{n+1}}\\ & =\left(-1\right)^{n+1}n!2^{n+1}\sum_{k=0}^{\infty}\frac{1}{\left(2k+1\right)^{n+1}}\\ & =\left(-1\right)^{n+1}n!2^{n+1}\left(\zeta\left(n+1\right)-\frac{\zeta\left(n+1\right)}{2^{n+1}}\right)\\ & =-\left(-1\right)^{n}n!\left(2^{n+1}-1\right)\left(\zeta\left(n+1\right)\right) \end{align*}(10)
\(n\in\mathbb{N}\)のとき、\begin{align*} \psi\left(m-\frac{1}{2}\right) & =\sum_{j=0}^{m-2}\left(\psi\left(j+1+\frac{1}{2}\right)-\psi\left(j+\frac{1}{2}\right)\right)+\psi\left(\frac{1}{2}\right)\\ & =\sum_{j=0}^{m-2}\frac{1}{j+\frac{1}{2}}+\psi\left(\frac{1}{2}\right)\\ & =2\sum_{j=0}^{m-2}\frac{1}{2j+1}+\psi\left(\frac{1}{2}\right)\\ & =2\left(\sum_{j=1}^{2m-2}\frac{1}{j}-\sum_{j=1}^{m-1}\frac{1}{2j}\right)+\psi\left(\frac{1}{2}\right)\\ & =2\left(\sum_{j=1}^{m-1}\frac{1}{2j}+\sum_{j=1}^{m-1}\frac{1}{2j-1}-\sum_{j=1}^{m-1}\frac{1}{2j}\right)+\psi\left(\frac{1}{2}\right)\\ & =H_{m-1}-2\sum_{j=1}^{2m-2}\frac{\left(-1\right)^{j}}{j}-\gamma-2\log2 \end{align*}
ページ情報
タイトル | ディガンマ関数・ポリガンマ関数の漸化式・正整数値・半正整数値 |
URL | https://www.nomuramath.com/euj5e7c7/ |
SNSボタン |
ガンマ関数の絶対収束条件
ガンマ関数$\Gamma\left(z\right)$は$\Re\left(z\right)>0$で絶対収束
第1種・第2種不完全ガンマ関数の基本性質
\[
\Gamma\left(1,x\right)=e^{-x}
\]
ガンマ関数の半整数値
\[
\Gamma\left(\frac{1}{2}+n\right)=\frac{(2n-1)!}{2^{2n-1}(n-1)!}\sqrt{\pi}
\]
ガンマ関数の対数とリーマン・ゼータ関数
\[
\log\Gamma\left(x+1\right)=-\gamma x+\sum_{k=2}^{\infty}\frac{(-1)^{k}\zeta\left(k\right)}{k}x^{k}
\]