開基の基本性質
開基の基本性質
位相空間\(\left(X,\mathcal{O}\right)\)で\(\mathcal{B}\)が開基であることと、任意の開集合\(O\in\mathcal{O}\)と任意の元\(x\in O\)に対し、ある\(\mathcal{B}\)の元\(B\in\mathcal{B}\)が存在し、\(x\in B\subseteq O\)となることは同値である。
位相空間\(\left(X,\mathcal{O}\right)\)で\(\mathcal{B}\)が開基であることと、任意の開集合\(O\in\mathcal{O}\)と任意の元\(x\in O\)に対し、ある\(\mathcal{B}\)の元\(B\in\mathcal{B}\)が存在し、\(x\in B\subseteq O\)となることは同値である。
\(\Rightarrow\)
条件より\(\mathcal{B}\)は開基なので、任意の開集合\(O\in\mathcal{O}\)に対し、\(\mathcal{B}\)のある部分集合\(\left\{ B_{\lambda};\lambda\in\Lambda\right\} \subseteq\mathcal{B}\)が存在し\(O=\bigcup\left\{ B_{\lambda};\lambda\in\Lambda\right\} =\bigcup_{\lambda\in\Lambda}B_{\lambda}\)となる。従って任意の元\(x\in O\)に対し、ある\(\lambda\in\Lambda\)が存在し、\(x\in B_{\lambda}\)となる。
これより\(O=\bigcup_{\lambda\in\Lambda}B_{\lambda}\)なので\(B_{\lambda}\subseteq O\)となり、\(x\in B_{\lambda}\subseteq O\)となる。
故に\(\Rightarrow\)が成り立つ。
\(\Leftarrow\)
条件より、任意の開集合\(O\in\mathcal{O}\)と任意の元\(x\in O\)に対し、ある\(\mathcal{B}\)の元\(B_{x}\in\mathcal{B}\)が存在し、\(x\in B_{x}\subseteq O\)となる。これより、任意の開集合\(O\)に対して、\(O=\bigcup_{x\in O}B_{x}\)とできるので\(\mathcal{B}\)は開基となる。
故に\(\Leftarrow\)が成り立つ。
\(\Leftrightarrow\)
これらより、\(\Rightarrow\)と\(\Leftarrow\)が成り立つので\(\Leftrightarrow\)が成り立つ。ページ情報
タイトル | 開基の基本性質 |
URL | https://www.nomuramath.com/ezz4tc0h/ |
SNSボタン |
第2種スターリング数の一般解
\[
S_{2}\left(n,k\right)=\frac{1}{k!}\sum_{j=0}^{k}\left(-1\right)^{k-j}C\left(k,j\right)j^{n}
\]
フレネル積分の定義
\[
S\left(x\right):=\int_{0}^{x}\sin\left(x^{2}\right)dx
\]
双曲線関数と三角関数の級数展開
\[
\tanh x=\sum_{k=1}^{\infty}\frac{2^{2k}\left(2^{2k}-1\right)B_{2k}}{(2k)!}x{}^{2k-1}
\]
有界閉区間上の連続関数はリーマン可積分
有界閉区間上の連続関数はリーマン可積分である。