不完全ガンマ関数とガンマ関数との関係
不完全ガンマ関数とガンマ関数との関係
\[ \gamma\left(a,x\right)+\Gamma\left(a,x\right)=\Gamma\left(a\right) \]
\[ \gamma\left(a,x\right)+\Gamma\left(a,x\right)=\Gamma\left(a\right) \]
-
\(\gamma\left(a,x\right)\)は第1種不完全ガンマ関数、\(\Gamma\left(a,x\right)\)は第2種不完全ガンマ関数、\(\Gamma\left(x\right)\)はガンマ関数\begin{align*}
\gamma\left(a,x\right)+\Gamma\left(a,x\right) & =\int_{0}^{x}t^{a-1}e^{-t}dt+\int_{x}^{\infty}t^{a-1}e^{-t}dt\\
& =\int_{0}^{\infty}t^{a-1}e^{-t}dt\\
& =\Gamma\left(a\right)
\end{align*}
ページ情報
タイトル | 不完全ガンマ関数とガンマ関数との関係 |
URL | https://www.nomuramath.com/flyweptl/ |
SNSボタン |
第2種不完全ガンマ関数とガンマ関数の比の極限
\[
\lim_{k\rightarrow0}\frac{\Gamma\left(k,x\right)}{\Gamma\left(k\right)}=\delta_{0x}
\]
ディガンマ関数・ポリガンマ関数の漸化式・正整数値・半正整数値
\[
\psi(z+1)=\psi(z)+\frac{1}{z}
\]
ガンマ関数の半整数値
\[
\Gamma\left(\frac{1}{2}+n\right)=\frac{(2n-1)!}{2^{2n-1}(n-1)!}\sqrt{\pi}
\]
ポリガンマ関数同士の差の極限
\[
\lim_{z\rightarrow0}\left(\psi^{\left(n\right)}\left(z-m\right)-\psi^{\left(n\right)}\left(z\right)\right)=n!H_{m,n+1}
\]