不完全ガンマ関数とガンマ関数との関係
不完全ガンマ関数とガンマ関数との関係
\[ \gamma\left(a,x\right)+\Gamma\left(a,x\right)=\Gamma\left(a\right) \]
\[ \gamma\left(a,x\right)+\Gamma\left(a,x\right)=\Gamma\left(a\right) \]
-
\(\gamma\left(a,x\right)\)は第1種不完全ガンマ関数、\(\Gamma\left(a,x\right)\)は第2種不完全ガンマ関数、\(\Gamma\left(x\right)\)はガンマ関数\begin{align*}
\gamma\left(a,x\right)+\Gamma\left(a,x\right) & =\int_{0}^{x}t^{a-1}e^{-t}dt+\int_{x}^{\infty}t^{a-1}e^{-t}dt\\
& =\int_{0}^{\infty}t^{a-1}e^{-t}dt\\
& =\Gamma\left(a\right)
\end{align*}
ページ情報
タイトル | 不完全ガンマ関数とガンマ関数との関係 |
URL | https://www.nomuramath.com/flyweptl/ |
SNSボタン |
ディガンマ関数・ポリガンマ関数の級数表示・テイラー展開と調和数・一般化調和数
\[
\psi\left(z\right)=-\gamma+H_{z-1}
\]
第1種・第2種不完全ガンマ関数の定義
\[
\Gamma\left(a,x\right)=\int_{x}^{\infty}t^{a-1}e^{-t}dt
\]
偶数と奇数の2重階乗
\[
\left(2n+1\right)!!=2^{n+1}\frac{\left(n+\frac{1}{2}\right)!}{\Gamma\left(\frac{1}{2}\right)}
\]
ガンマ関数の漸化式
\[
\Gamma(z+1)=z\Gamma(z)
\]