不完全ガンマ関数とガンマ関数との関係
不完全ガンマ関数とガンマ関数との関係
\[ \gamma\left(a,x\right)+\Gamma\left(a,x\right)=\Gamma\left(a\right) \]
\[ \gamma\left(a,x\right)+\Gamma\left(a,x\right)=\Gamma\left(a\right) \]
-
\(\gamma\left(a,x\right)\)は第1種不完全ガンマ関数、\(\Gamma\left(a,x\right)\)は第2種不完全ガンマ関数、\(\Gamma\left(x\right)\)はガンマ関数\begin{align*}
\gamma\left(a,x\right)+\Gamma\left(a,x\right) & =\int_{0}^{x}t^{a-1}e^{-t}dt+\int_{x}^{\infty}t^{a-1}e^{-t}dt\\
& =\int_{0}^{\infty}t^{a-1}e^{-t}dt\\
& =\Gamma\left(a\right)
\end{align*}
ページ情報
タイトル | 不完全ガンマ関数とガンマ関数との関係 |
URL | https://www.nomuramath.com/flyweptl/ |
SNSボタン |
ガンマ関数の漸化式
\[
\Gamma(z+1)=z\Gamma(z)
\]
ガンマ関数の無限乗積
\[
\Gamma(x)=\lim_{n\rightarrow\infty}n^{x}n!Q^{-1}(x,n+1)
\]
ガンマ関数の半整数値
\[
\Gamma\left(\frac{1}{2}+n\right)=\frac{(2n-1)!}{2^{2n-1}(n-1)!}\sqrt{\pi}
\]
第2種不完全ガンマ関数とガンマ関数の比の極限
\[
\lim_{k\rightarrow0}\frac{\Gamma\left(k,x\right)}{\Gamma\left(k\right)}=\delta_{0x}
\]