距離空間ならばハウスドルフ空間

距離空間ならばハウスドルフ空間
距離空間\(\left(X,d\right)\)ならばハウスドルフ空間となる。
逆は一般的に成り立たない。
対偶をとると、ハウスドルフ空間でないならば距離空間とはならない。

\(\Rightarrow\)

距離空間\(\left(X,d\right)\)の任意の異なる2点\(x,y\)に対し、\(0<d\left(x,y\right)\)なので\(\epsilon=d\left(x,y\right)\)とおくと、開近傍\(U\left(x,\frac{\epsilon}{2}\right),U\left(y,\frac{\epsilon}{2}\right)\)は\(U\left(x,\frac{\epsilon}{2}\right)\cap U\left(y,\frac{\epsilon}{2}\right)=\emptyset\)を満たすのでハウスドルフ空間になる。

\(\Leftarrow\)は一般的に成り立たない

上限位相が反例である。

ページ情報
タイトル
距離空間ならばハウスドルフ空間
URL
https://www.nomuramath.com/fs1izgfh/
SNSボタン