位数と原始根の定義
位数
\(p\)を2以上の自然数とし、\(a^{n}\overset{p}{\equiv}1\)となる最小の正整数\(n\)を法\(p\)における\(a\)の位数という。
原始根
素数\(p\)を法としたとき\(a\)の位数が\(p-1\)になるとき\(a\)を\(p\)の原始根という。
\(p\)を2以上の自然数とし、\(a^{n}\overset{p}{\equiv}1\)となる最小の正整数\(n\)を法\(p\)における\(a\)の位数という。
原始根
素数\(p\)を法としたとき\(a\)の位数が\(p-1\)になるとき\(a\)を\(p\)の原始根という。
ページ情報
タイトル | 位数と原始根の定義 |
URL | https://www.nomuramath.com/fs1uv9bw/ |
SNSボタン |
(*)原始根定理
\[
\varphi(p-1)
\]
ユークリッドの互除法
\[
\gcd(a,b)=\gcd(b,r)
\]
完全剰余系の基本定理
\[
1a,2a,3a,\cdots\cdots,na
\]
2元1次不定方程式の整数解とユークリッドの互除法
\[
ax+by=c
\]