矩形関数の定義
矩形関数の定義
矩形(くけい)関数は次で定義される。
\[ \mathrm{rect}\left(x\right):=\begin{cases} 1 & \left|x\right|<\frac{1}{2}\\ \frac{1}{2} & \left|x\right|=\frac{1}{2}\\ 0 & \frac{1}{2}<\left|x\right| \end{cases} \] \(\mathrm{rect}\left(\pm\frac{1}{2}\right)\)は\(\frac{1}{2}\)以外にも\(0,1\)か未定義とすることもあります。

矩形(くけい)関数は次で定義される。
\[ \mathrm{rect}\left(x\right):=\begin{cases} 1 & \left|x\right|<\frac{1}{2}\\ \frac{1}{2} & \left|x\right|=\frac{1}{2}\\ 0 & \frac{1}{2}<\left|x\right| \end{cases} \] \(\mathrm{rect}\left(\pm\frac{1}{2}\right)\)は\(\frac{1}{2}\)以外にも\(0,1\)か未定義とすることもあります。
短型(たんけい)関数ではなく矩形(くけい)関数です。
\(x\)軸で囲まれる面積は1、すなわち\(\int_{-\frac{1}{2}}^{\frac{1}{2}}\text{tri}\left(x\right)dx=1\)となります。
\(x\)軸で囲まれる面積は1、すなわち\(\int_{-\frac{1}{2}}^{\frac{1}{2}}\text{tri}\left(x\right)dx=1\)となります。
ページ情報
タイトル | 矩形関数の定義 |
URL | https://www.nomuramath.com/ftjk5en2/ |
SNSボタン |
線型隣接二項間漸化式
\[
a_{n+1}=p(n)a_{n}+q(n)
\]
階乗冪(下降階乗・上昇階乗)の和分
\[
\sum_{k=1}^{m}P(k,n)=\frac{1}{n+1}P(m+1,n+1)
\]
多重対数関数の定義
\[
Li_{s}(z)=\sum_{k=1}^{\infty}\frac{z^{k}}{k^{s}}
\]
冪乗の符号関数
\[
\sgn\left(\alpha^{b}\right)=\sgn^{b}\left(\alpha\right)
\]