4次方程式の標準形
4次方程式の標準形
4次方程式\(a_{4}\ne0\)
\[ a_{4}x^{4}+a_{3}x^{3}+a_{2}x^{2}+a_{1}x+a_{0}=0 \] は以下のように変形できる。
\[ X^{4}+pX^{2}+qX+r=0 \] ただし、
\[ \begin{cases} X=x+\frac{a_{3}}{4a_{4}}\\ p=-\frac{3a_{3}^{\;2}}{8a_{4}^{\;2}}+\frac{a_{2}}{a_{4}}\\ q=\frac{a_{3}^{\;3}}{8a_{4}^{\;3}}-\frac{a_{3}a_{2}}{2a_{4}^{\;2}}+\frac{a_{1}}{a_{4}}\\ r=-\frac{3a_{3}^{\;4}}{256a_{4}^{\;4}}+\frac{a_{3}^{\;2}a_{2}}{16a_{4}^{\;3}}-\frac{a_{3}a_{1}}{4a_{4}^{\;2}}+\frac{a_{0}}{a_{4}} \end{cases} \]
4次方程式\(a_{4}\ne0\)
\[ a_{4}x^{4}+a_{3}x^{3}+a_{2}x^{2}+a_{1}x+a_{0}=0 \] は以下のように変形できる。
\[ X^{4}+pX^{2}+qX+r=0 \] ただし、
\[ \begin{cases} X=x+\frac{a_{3}}{4a_{4}}\\ p=-\frac{3a_{3}^{\;2}}{8a_{4}^{\;2}}+\frac{a_{2}}{a_{4}}\\ q=\frac{a_{3}^{\;3}}{8a_{4}^{\;3}}-\frac{a_{3}a_{2}}{2a_{4}^{\;2}}+\frac{a_{1}}{a_{4}}\\ r=-\frac{3a_{3}^{\;4}}{256a_{4}^{\;4}}+\frac{a_{3}^{\;2}a_{2}}{16a_{4}^{\;3}}-\frac{a_{3}a_{1}}{4a_{4}^{\;2}}+\frac{a_{0}}{a_{4}} \end{cases} \]
\[
X=x+\frac{a_{3}}{4a_{4}}
\]
とおくと、
\begin{align*} a_{4}x^{4}+a_{3}x^{3}+a_{2}x^{2}+a_{1}x+a_{0} & =a_{4}\left\{ \left(X-\frac{a_{3}}{4a_{4}}\right)^{4}+\frac{a_{3}}{a_{4}}\left(X-\frac{a_{3}}{4a_{4}}\right)^{3}+\frac{a_{2}}{a_{4}}\left(X-\frac{a_{3}}{4a_{4}}\right)^{2}+\frac{a_{1}}{a_{4}}\left(X-\frac{a_{3}}{4a_{4}}\right)+\frac{a_{0}}{a_{4}}\right\} \\ & =a_{4}\left\{ X^{4}+\left(-\frac{3a_{3}^{\;2}}{8a_{4}^{\;2}}+\frac{a_{2}}{a_{4}}\right)X^{2}+\left(\frac{a_{3}^{\;3}}{8a_{4}^{\;3}}-\frac{a_{3}a_{2}}{2a_{4}^{\;2}}+\frac{a_{1}}{a_{4}}\right)X-\frac{3a_{3}^{\;4}}{256a_{4}^{\;4}}+\frac{a_{3}^{\;2}a_{2}}{16a_{4}^{\;3}}-\frac{a_{3}a_{1}}{4a_{4}^{\;2}}+\frac{a_{0}}{a_{4}}\right\} \end{align*} となるので、
\[ \begin{cases} p=-\frac{3a_{3}^{\;2}}{8a_{4}^{\;2}}+\frac{a_{2}}{a_{4}}\\ q=\frac{a_{3}^{\;3}}{8a_{4}^{\;3}}-\frac{a_{3}a_{2}}{2a_{4}^{\;2}}+\frac{a_{1}}{a_{4}}\\ r=-\frac{3a_{3}^{\;4}}{256a_{4}^{\;4}}+\frac{a_{3}^{\;2}a_{2}}{16a_{4}^{\;3}}-\frac{a_{3}a_{1}}{4a_{4}^{\;2}}+\frac{a_{0}}{a_{4}} \end{cases} \] とおくと、
\begin{align*} 0 & =a_{4}x^{4}+a_{3}x^{3}+a_{2}x^{2}+a_{1}x+a_{0}\\ & =a_{4}\left\{ X^{4}+pX^{2}+qX+r\right\} \end{align*} 両辺を\(a_{4}\ne0\)で割って、
\[ X^{4}+pX^{2}+qX+r=0 \] となる。
\begin{align*} a_{4}x^{4}+a_{3}x^{3}+a_{2}x^{2}+a_{1}x+a_{0} & =a_{4}\left\{ \left(X-\frac{a_{3}}{4a_{4}}\right)^{4}+\frac{a_{3}}{a_{4}}\left(X-\frac{a_{3}}{4a_{4}}\right)^{3}+\frac{a_{2}}{a_{4}}\left(X-\frac{a_{3}}{4a_{4}}\right)^{2}+\frac{a_{1}}{a_{4}}\left(X-\frac{a_{3}}{4a_{4}}\right)+\frac{a_{0}}{a_{4}}\right\} \\ & =a_{4}\left\{ X^{4}+\left(-\frac{3a_{3}^{\;2}}{8a_{4}^{\;2}}+\frac{a_{2}}{a_{4}}\right)X^{2}+\left(\frac{a_{3}^{\;3}}{8a_{4}^{\;3}}-\frac{a_{3}a_{2}}{2a_{4}^{\;2}}+\frac{a_{1}}{a_{4}}\right)X-\frac{3a_{3}^{\;4}}{256a_{4}^{\;4}}+\frac{a_{3}^{\;2}a_{2}}{16a_{4}^{\;3}}-\frac{a_{3}a_{1}}{4a_{4}^{\;2}}+\frac{a_{0}}{a_{4}}\right\} \end{align*} となるので、
\[ \begin{cases} p=-\frac{3a_{3}^{\;2}}{8a_{4}^{\;2}}+\frac{a_{2}}{a_{4}}\\ q=\frac{a_{3}^{\;3}}{8a_{4}^{\;3}}-\frac{a_{3}a_{2}}{2a_{4}^{\;2}}+\frac{a_{1}}{a_{4}}\\ r=-\frac{3a_{3}^{\;4}}{256a_{4}^{\;4}}+\frac{a_{3}^{\;2}a_{2}}{16a_{4}^{\;3}}-\frac{a_{3}a_{1}}{4a_{4}^{\;2}}+\frac{a_{0}}{a_{4}} \end{cases} \] とおくと、
\begin{align*} 0 & =a_{4}x^{4}+a_{3}x^{3}+a_{2}x^{2}+a_{1}x+a_{0}\\ & =a_{4}\left\{ X^{4}+pX^{2}+qX+r\right\} \end{align*} 両辺を\(a_{4}\ne0\)で割って、
\[ X^{4}+pX^{2}+qX+r=0 \] となる。
ページ情報
タイトル | 4次方程式の標準形 |
URL | https://www.nomuramath.com/fvcxk788/ |
SNSボタン |
相反方程式の定義と解法
\[
\sum_{k=0}^{n}a_{k}x^{k}=0
\]
4次方程式標準形の解き方
\[
y=\frac{\mp_{1}\sqrt{2u-p}\pm_{2}\sqrt{-p-2u-\frac{4q}{2\sqrt{2u-p}}}}{2}
\]
n乗同士の和と差の因数分解
\[
a^{2n+1}\pm b^{2n+1}=\left(a\pm b\right)\left(\sum_{k=0}^{2n}\left(\mp1\right)^{k}a^{2n-k}b^{k}\right)
\]
ビネ・コーシーとラグランジュの恒等式
\[
\left(\sum_{i=1}^{n}a_{i}c_{i}\right)\left(\sum_{j=1}^{n}b_{j}d_{j}\right)-\left(\sum_{i=1}^{n}a_{i}d_{i}\right)\left(\sum_{j=1}^{n}b_{j}c_{j}\right)=\sum_{1\leq i<j\leq n}\left(a_{i}b_{j}-a_{j}b_{i}\right)\left(c_{i}d_{j}-c_{j}d_{i}\right)
\]