対数と偏角の性質
対数と偏角の主値の性質
\(n\in\mathbb{Z}\)とする。
\[ \forall\alpha\in\mathbb{C}\setminus\left\{ 0\right\} ,\Log\alpha^{\beta}=\beta\Log\alpha\Leftrightarrow-1<\beta\leq1 \] が成り立つ。
\[ \Log r^{x}=x\ln r \] が成り立つ。
\(n\in\mathbb{Z}\)とする。
(1)
\[ \Arg\left(\alpha\beta\right)\overset{2\pi}{\equiv}\Arg\left(\alpha\right)+\Arg\left(\beta\right) \](2)
\[ \Arg\left(\pv\left(\alpha^{\beta}\right)\right)\overset{2\pi}{\equiv}\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\Arg\left(\alpha\right) \](3)
\[ \Arg\left(\alpha^{n}\right)\overset{2\pi}{\equiv}n\Arg\left(\alpha\right) \](4)
\[ \Arg\left(\frac{1}{\alpha}\right)\overset{2\pi}{\equiv}-\Arg\left(\alpha\right) \](5)
\[ \begin{align*}\Log\left(\alpha\beta\right) & \overset{2\pi}{\equiv}\Log\alpha+\Log\beta\end{align*} \](6)
\[ \begin{align*}\Log\left(\pv\left(\alpha^{\beta}\right)\right) & \overset{2\pi i}{\equiv}\beta\Log\alpha\end{align*} \](7)
\[ \Log\alpha^{n}\overset{2\pi i}{\equiv}n\Log\alpha \](8)
\[ \Log\frac{1}{\alpha}\overset{2\pi i}{\equiv}-\Log\alpha \](9)
\(\beta\)を複素数\(\beta\in\mathbb{C}\)とすると、\[ \forall\alpha\in\mathbb{C}\setminus\left\{ 0\right\} ,\Log\alpha^{\beta}=\beta\Log\alpha\Leftrightarrow-1<\beta\leq1 \] が成り立つ。
(10)
\(0<r,x\in\mathbb{R}\)のとき、\[ \Log r^{x}=x\ln r \] が成り立つ。
等号が成り立たない例
(1)の例
\(\alpha=\beta=-1\)とすると左辺は\(\Arg\left(\left(-1\right)\left(-1\right)\right)=\Arg\left(1\right)=0\)で右辺は\(\Arg\left(-1\right)+\Arg\left(-1\right)=\pi+\pi=2\pi\)となるので等号は成り立たない。(2)の例
\(\alpha=-1,\beta=2\)とすると左辺は\(\Arg\left(\pv\left(\left(-1\right)^{2}\right)\right)=\Arg\left(1\right)=0\)で右辺は\(\Im\left(2\right)\ln\left|-1\right|+\Re\left(2\right)\Arg\left(-1\right)=2\pi\)となるので等号は成り立たない。(3)の例
\(\alpha=-1,n=2\)とすると左辺は\(\Arg\left(\left(-1\right)^{2}\right)=\Arg\left(1\right)=0\)で右辺は\(2\Arg\left(-1\right)=2\pi\)となるので等号は成り立たない。(4)の例
\(\alpha=-1\)とすると左辺は\(\Arg\left(\frac{1}{-1}\right)=\Arg\left(-1\right)=\pi\)で右辺は\(-\Arg\left(-1\right)=-\pi\)となるので等号は成り立たない。(5)の例
\(\alpha=\beta=-1\)とすると左辺は\(\begin{align*}\Log\left(\left(-1\right)\left(-1\right)\right) & =\Log\left(1\right)=0\end{align*} \)で右辺は\(\Log\left(-1\right)+\Log\left(-1\right)=\pi i+\pi i=2\pi i\)となるので等号は成り立たない。(6)の例
\(\alpha=-1,\beta=2\)とすると左辺は\(\Log\left(\pv\left(\left(-1\right)^{2}\right)\right)=\Log\left(1\right)=0\)で右辺は\(2\Log\left(-1\right)=2\pi i\)となるので等号は成り立たない。(7)の例
\(\alpha=-1,n=2\)とすると左辺は\(\Log\left(\left(-1\right)^{2}\right)=\Log\left(1\right)=0\)で右辺は\(2\Log\left(-1\right)=2\pi i\)となるので等号は成り立たない。(8)の例
\(\alpha=-1\)とすると左辺は\(\Log\frac{1}{-1}=\Log\left(-1\right)=\pi i\)で右辺は\(-\Log\left(-1\right)=-\pi i\)となるので等号は成り立たない。(1)
\begin{align*} \Arg\left(\alpha\beta\right) & =\Arg\left(\left|\alpha\right|e^{i\Arg\left(\alpha\right)}\left|\beta\right|e^{i\Arg\left(\beta\right)}\right)\\ & =\Arg\left(\left|\alpha\beta\right|e^{i\left(\Arg\left(\alpha\right)+\Arg\left(\beta\right)\right)}\right)\\ & \overset{2\pi}{\equiv}\Arg\left(\alpha\right)+\Arg\left(\beta\right) \end{align*}(2)
\begin{align*} \Arg\left(\pv\left(\alpha^{\beta}\right)\right) & =\Arg\left(e^{\beta\Log\alpha}\right)\\ & =\Arg\left(e^{\left(\Re\left(\beta\right)+i\Im\left(\beta\right)\right)\left(\ln\left|\alpha\right|+i\Arg\left(\alpha\right)\right)}\right)\\ & =\Arg\left(e^{\left(\Re\left(\beta\right)\ln\left|\alpha\right|-\Im\left(\beta\right)\Arg\left(\alpha\right)\right)+i\left(\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\Arg\left(\alpha\right)\right)}\right)\\ & =\Arg\left(\left|\alpha\right|^{\Re\left(\beta\right)}e^{-\Im\left(\beta\right)\Arg\left(\alpha\right)}e^{i\left(\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\Arg\left(\alpha\right)\right)}\right)\\ & \overset{2\pi}{\equiv}\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\Arg\left(\alpha\right) \end{align*}(3)
(2)より、\begin{align*} \Arg\left(\alpha^{n}\right) & \overset{2\pi}{\equiv}n\Arg\left(\alpha\right) \end{align*}
(4)
(2)より、\begin{align*} \Arg\left(\frac{1}{\alpha}\right) & \overset{2\pi}{\equiv}-\Arg\left(\alpha\right) \end{align*}
(5)
\[ \begin{align*}\Log\left(\alpha\beta\right) & =\ln\left|\alpha\beta\right|+i\Arg\left(\alpha\beta\right)\\ & \overset{2\pi}{\equiv}\ln\left|\alpha\right|+\ln\left|\beta\right|+i\Arg\alpha+i\Arg\beta\\ & =\Log\alpha+\Log\beta \end{align*} \](6)
\[ \begin{align*}\Log\left(\pv\left(\alpha^{\beta}\right)\right) & =\Log e^{\beta\Log\alpha}\\ & =\Log e^{\left(\Re\left(\beta\right)+i\Im\left(\beta\right)\right)\left(\ln\left|\alpha\right|+i\Arg\alpha\right)}\\ & =\Log e^{\left(\Re\left(\beta\right)\ln\left|\alpha\right|-\Im\left(\beta\right)\Arg\alpha\right)+i\left(\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\Arg\alpha\right)}\\ & =\Log\left(\left|\alpha\right|^{\Re\left(\beta\right)}e^{-\Im\left(\beta\right)\Arg\alpha}e^{i\left(\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\Arg\alpha\right)}\right)\\ & =\Log\left(\left|\alpha\right|^{\Re\left(\beta\right)}e^{-\Im\left(\beta\right)\Arg\alpha}\right)+\Log e^{i\left(\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\Arg\alpha\right)}\\ & \overset{2\pi i}{\equiv}\Re\left(\beta\right)\ln\left|\alpha\right|-\Im\left(\beta\right)\Arg\alpha+i\left(\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\Arg\alpha\right)\\ & =\left(\Re\left(\beta\right)+i\Im\left(\beta\right)\right)\ln\left|\alpha\right|+i\left(\Re\left(\beta\right)+i\Im\left(\beta\right)\right)\Arg\alpha\\ & =\beta\left(\ln\left|\alpha\right|+i\Arg\alpha\right)\\ & =\beta\Log\alpha \end{align*} \](7)
(6)より、\[ \Log\alpha^{n}\overset{2\pi i}{\equiv}n\Log\alpha \]
(8)
(6)より、\[ \Log\frac{1}{\alpha}\overset{2\pi i}{\equiv}-\Log\alpha \]
(9)
\(\Rightarrow\)
\(\Log\alpha^{\beta}\)と\(\beta\Log\alpha\)は、\begin{align*} \Log\alpha^{\beta} & =\Log\left(\left|\alpha\right|^{\Re\left(\beta\right)}e^{-\Im\left(\beta\right)\Arg\alpha}e^{i\left(\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\Arg\alpha\right)}\right)\\ & =\ln\left|\left|\alpha\right|^{\Re\left(\beta\right)}e^{-\Im\left(\beta\right)\Arg\alpha}\right|+i\Arg\left(\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\Arg\alpha\right)\\ & =\ln\left|e^{\Re\left(\beta\right)\ln\left|\alpha\right|}e^{-\Im\left(\beta\right)\Arg\alpha}\right|+i\Arg\left(\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\Arg\alpha\right)\\ & =\left(\Re\left(\beta\right)\ln\left|\alpha\right|-\Im\left(\beta\right)\Arg\alpha\right)+i\Arg\left(\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\Arg\alpha\right) \end{align*} \begin{align*} \beta\Log\alpha & =\left(\Re\left(\beta\right)+i\Im\left(\beta\right)\right)\left(\ln\left|\alpha\right|+i\Arg\left(\alpha\right)\right)\\ & =\Re\left(\beta\right)\ln\left|\alpha\right|-\Im\left(\beta\right)\Arg\left(\alpha\right)+i\left(\Re\left(\beta\right)\Arg\left(\alpha\right)+\Im\left(\beta\right)\ln\left|\alpha\right|\right) \end{align*} となり、\(\Log\alpha^{\beta}=\beta\Log\alpha\)を満たすには、
\[ \Arg\left(\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\Arg\alpha\right)=\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\Arg\left(\alpha\right) \] となる。
これは任意の\(\alpha\in\mathbb{C}\setminus\left\{ 0\right\} \)について成り立つので、\(\alpha\rightarrow\infty\)とすると、
\[ \lim_{\alpha\rightarrow\infty}\Arg\left(\left(\Im\left(\beta\right)\ln\left|\alpha\right|\right)\right)=\lim_{\alpha\rightarrow\infty}\Im\left(\beta\right)\ln\left|\alpha\right| \] となり、これが成り立つには\(\Im\left(\beta\right)=0\)でないといけない。
そうすると、
\[ \Arg\left(\Re\left(\beta\right)\arg\alpha\right)=\Re\left(\beta\right)\Arg\left(\alpha\right) \] となり、これを満たすには、\(-1<\Re\left(\beta\right)\leq1\)でないといけない。
従って、\(\forall\alpha\in\mathbb{C}\setminus\left\{ 0\right\} ,\Log\alpha^{\beta}=\beta\Log\alpha\Rightarrow-1<\Re\left(\beta\right)\leq1\land\Im\left(\beta\right)=0\Leftrightarrow-1<\beta\leq1\)となる。
故に\(\Rightarrow\)が成り立つ。
\(\Leftarrow\)
条件より、\(-1<\beta\leq1\)なので、\(-1<\Re\left(\beta\right)\leq1\land\Im\left(\beta\right)=0\)であるので、\begin{align*} \Log\alpha^{\beta} & =\left(\Re\left(\beta\right)\ln\left|\alpha\right|-\Im\left(\beta\right)\Arg\alpha\right)+i\Arg\left(\left(\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\Arg\alpha\right)\right)\\ & =\Re\left(\beta\right)\ln\left|\alpha\right|+i\Arg\left(\Re\left(\beta\right)\Arg\alpha\right)\\ & =\Re\left(\beta\right)\ln\left|\alpha\right|+i\Re\left(\beta\right)\Arg\left(\alpha\right)\\ & =\Re\left(\beta\right)\left(\ln\left|\alpha\right|+i\Arg\left(\alpha\right)\right)\\ & =\Re\left(\beta\right)\Log\left(\alpha\right)\\ & =\beta\Log\left(\alpha\right) \end{align*} となり、\(\Leftarrow\)が成り立つ。
\(\Leftrightarrow\)
これらより\(\Rightarrow\)と\(\Leftarrow\)が成り立つので題意は成り立つ。(10)
\begin{align*} \Log r^{x} & =\left(\Re\left(x\right)\ln\left|r\right|-\Im\left(x\right)\Arg r\right)+i\Arg\left(\left(\Im\left(x\right)\ln\left|r\right|+\Re\left(x\right)\Arg r\right)\right)\\ & =x\ln\left|r\right|+i\Arg\left(x\Arg r\right)\cmt{\because\Im\left(x\right)=0}\\ & =x\ln\left|r\right|\cmt{\because\Arg r=0} \end{align*}対数と偏角の多価関数の性質
\(n\in\mathbb{Z}\)とする。
\(n\in\mathbb{Z}\)とする。
(1)
\[ \arg(\alpha\beta)=\arg(\alpha)+\arg(\beta) \](2)
\[ \arg\mv\alpha^{\beta}=\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\arg\alpha+\arg1 \](3)
\[ \arg\alpha^{n}=n\arg\alpha+\arg1 \](4)
\[ \arg(1/\alpha)=-\arg(\alpha) \](5)
\[ \log\left(\alpha\beta\right)=\log\alpha+\log\beta \](6)
\[ \log\mv\alpha^{\beta}=\beta\log\alpha+\log1 \](7)
\[ \log\alpha^{n}=n\log\alpha+\log1 \](8)
\[ \log\left(1/z\right)=-\log z \](1)
\begin{align*} \arg\left(\alpha\beta\right) & =\Arg\left(\alpha\beta\right)+\arg1\\ & =\Arg\alpha+\Arg\beta+\arg1\\ & =\arg\alpha+\arg\beta \end{align*}(1)-2
\begin{align*} \arg\left(\alpha\beta\right) & =\arg\left(\left|\alpha\right|e^{i\arg\alpha}\left|\beta\right|e^{i\arg\beta}\right)\\ & =\arg\left(\left|\alpha\beta\right|e^{i\left(\arg\alpha+\arg\beta\right)}\right)\\ & =\arg\alpha+\arg\beta \end{align*}(2)
\begin{align*} \arg\mv\alpha^{\beta} & =\Arg\left(\alpha^{\beta}\mv\left(1^{\beta}\right)\right)+\arg1\\ & =\Arg\alpha^{\beta}+\Arg\mv1^{\beta}+\arg1\\ & =\Arg\alpha^{\beta}+\Re\left(\beta\right)\arg1+\arg1\\ & =\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\Arg\left(\alpha\right)+\Re\left(\beta\right)\arg1+\arg1\\ & =\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\arg\left(\alpha\right)+\arg1 \end{align*}(2)-2
\begin{align*} \arg\mv\alpha^{\beta} & =\arg e^{\beta\log\alpha}\\ & =\arg e^{\left(\Re\left(\beta\right)+\Im\left(\beta\right)i\right)\left(\ln\left|\alpha\right|+i\arg\alpha\right)}\\ & =\arg e^{\left(\Re\left(\beta\right)\ln\left|\alpha\right|-\Im\left(\beta\right)\arg\alpha\right)+i\left(\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\arg\alpha\right)}\\ & =\arg\left(\left|\alpha\right|^{\Re\left(\beta\right)}e^{-\Im\left(\beta\right)\arg\alpha}e^{i\left(\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\arg\alpha\right)}\right)\\ & =\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\arg\alpha+\arg1 \end{align*}(3)
(2)より、\begin{align*} \arg\alpha^{n} & =\Im\left(n\right)\ln\left|\alpha\right|+\Re\left(n\right)\arg\alpha+\arg1\\ & =n\arg\alpha+\arg1 \end{align*}
(3)-2
\begin{align*} \arg\alpha^{n} & =\sum_{k=1}^{n}\arg\alpha\\ & =\sum_{k=1}^{n}\left\{ \Arg\alpha+2\pi m;m\in\mathbb{Z}\right\} \\ & =\left\{ n\Arg\alpha+2\pi\left(m_{1}+m_{2}+\cdots\cdots+m_{n}\right);m_{i}\in\mathbb{Z}\right\} \\ & =\left\{ n\Arg\alpha+2\pi m;m\in\mathbb{Z}\right\} \\ & =n\Arg\alpha+\left\{ 2\pi m;m\in\mathbb{Z}\right\} \\ & =n\Arg\alpha+\arg1\\ & =n\Arg\alpha+n\arg1+\arg1\\ & =n\arg\alpha+\arg1 \end{align*}(4)
(2)より、\begin{align*} \arg\left(1/\alpha\right) & =\arg\alpha^{-1}\\ & =-\arg\alpha+\arg1\\ & =-\arg\alpha \end{align*}
(5)
\begin{align*} \log\left(\alpha\beta\right) & =\Log\left(\alpha\beta\right)+\log1\\ & =\Log\alpha+\Log\beta+\log1\\ & =\log\alpha+\log\beta \end{align*}(5)-2
\begin{align*} \log\left(\alpha\beta\right) & =\ln\left|\alpha\beta\right|+i\arg\left(\alpha\beta\right)\\ & =\ln\left|\alpha\right|+\ln\left|\beta\right|+i\arg\alpha+i\arg\beta\\ & =\log\alpha+\log\beta \end{align*}(6)
\begin{align*} \log\mv\left(\alpha^{\beta}\right) & =\Log\left(\alpha^{\beta}\mv\left(1^{\beta}\right)\right)+\log1\\ & =\Log\alpha^{\beta}+\Log\mv\left(1^{\beta}\right)+\log1\\ & =\Log\alpha^{\beta}+\Log e^{\beta\log1}+\log1\\ & =\beta\Log\alpha+\beta\log1+\log1\\ & =\beta\left(\Log\alpha+\log1\right)+\log1\\ & =\beta\log\alpha+\log1 \end{align*}(6)
\begin{align*} \log\mv\alpha^{\beta} & =\log e^{\beta\log\alpha}\\ & =\log e^{\left(\Re\left(\beta\right)+\Im\left(\beta\right)i\right)\left(\ln\left|\alpha\right|+i\arg\alpha\right)}\\ & =\log e^{\left(\Re\left(\beta\right)\ln\left|\alpha\right|-\Im\left(\beta\right)\arg\alpha\right)+i\left(\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\arg\alpha\right)}\\ & =\log\left(\left|\alpha\right|^{\Re\left(\beta\right)}e^{-\Im\left(\beta\right)\arg\alpha}e^{i\left(\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\arg\alpha\right)}\right)\\ & =\ln\left(\left|\alpha\right|^{\Re\left(\beta\right)}e^{-\Im\left(\beta\right)\arg\alpha}\right)+\log e^{i\left(\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\arg\alpha\right)}\\ & =\Re\left(\beta\right)\ln\left|\alpha\right|-\Im\left(\beta\right)\arg\alpha+i\left(\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\arg\alpha\right)+\log1\\ & =\left(\Re\left(\beta\right)+\Im\left(\beta\right)i\right)\ln\left|\alpha\right|+i\left(\Re\left(\beta\right)+\Im\left(\beta\right)i\right)\arg\alpha+\log1\\ & =\beta\left(\ln\left|\alpha\right|+i\arg\alpha\right)+\log1\\ & =\beta\log\alpha+\log1 \end{align*}(7)
(6)より、\[ \log\alpha^{n}=n\log\alpha+\log1 \]
(7)-2
\begin{align*} \log\alpha^{n} & =\sum_{k=1}^{n}\log\alpha\\ & =\sum_{k=1}^{n}\left\{ \Log\alpha+2\pi im;m\in\mathbb{Z}\right\} \\ & =\left\{ n\Log\alpha+2\pi i\left(m_{1}+m_{2}+\cdots\cdots+m_{n}\right);m_{i}\in\mathbb{Z}\right\} \\ & =\left\{ n\Log\alpha+2\pi im;m\in\mathbb{Z}\right\} \\ & =n\Log\alpha+\left\{ 2\pi im;m\in\mathbb{Z}\right\} \\ & =n\Log\alpha+\log1\\ & =n\Log\alpha+n\log1+\log1\\ & =n\log\alpha+\log1 \end{align*}(8)
(6)より、\begin{align*} \log\left(1/\alpha\right) & =\log\alpha^{-1}\\ & =-\log\alpha+\log1\\ & =-\log\alpha \end{align*}
ページ情報
タイトル | 対数と偏角の性質 |
URL | https://www.nomuramath.com/g66k0tun/ |
SNSボタン |
偏角・対数と符号関数の関係
\[
\Arg\left(z\right)=-i\Log\left(\sgn\left(z\right)\right)
\]
積が非負実数のべき乗
\[
\left(\Arg\left(\alpha\right)\ne\pi\lor\Arg\left(\beta\right)\ne\pi\right)\land0\leq a\beta\rightarrow\left(\alpha\beta\right)^{\gamma}=\alpha^{\gamma}\beta^{\gamma}
\]
偏角・対数と絶対値
\[
\Log\left(\left|\alpha\right|\beta\right)=\ln\left|\alpha\right|+\Log\beta
\]
偏角・対数の極限
\[
\lim_{x\rightarrow\pm0}\left\{ \Arg\left(\alpha x\right)-\Arg\left(x\right)\right\} =\begin{cases}
\Arg\alpha & x\rightarrow+0\\
\Arg\left(-\alpha\right)-\pi & x\rightarrow-0
\end{cases}
\]